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1. Abstract and executive summary 
 

1.1 Abstract 
The DIAPasON project focuses on the need of the ATM system to develop tools and methodologies 

which are able to support traffic and trajectory management functions. For these activities, trajectory 

and traffic prediction is key, in particular within the context of Trajectory-Based Operations (TBO). 

While previous research exists addressing these matters, DIAPasON presents a different approach. In 

particular, the project aims at analysing patterns of flight plan evolution for individual flights, and 

extract patterns and feature which can be applied in a wide number of operational contexts where 

this information is available. The main result of the project is the development of a methodology for 

trajectory prediction and traffic forecasting in a pre-tactical phase (from a few days to a few hours 

before the operations, when a only limited number of flight plans are available). This can be adjusted 

to different time scales (planning horizons), considering the level of predictability of each of them and 

the specific use case to where it should be applied. These results have been explored with support of 

operational staff to maximise the benefits in the pre-tactical phase. 

 

1.2 Executive summary 
To face the increasing air traffic demand, the future Air Traffic Management (ATM) system will rely on 

the Trajectory Based Operations (TBO) approach, which will require aircraft to follow an assigned 4D-

trajectory (time-constrained trajectory) with high precision. TBO involves separating aircraft via 

strategic (long-term) trajectory definition, rather than the currently practiced tactical (short-term) 

ŎƻƴŦƭƛŎǘ ǊŜǎƻƭǳǘƛƻƴΦ ¢ƘŜ Ƴŀƛƴ Ǝƻŀƭ ƛǎ ǘƻ ƛƴŎǊŜŀǎŜ ŀƛǊ ǘǊŀŦŦƛŎ ŎŀǇŀŎƛǘȅ ōȅ ǊŜŘǳŎƛƴƎ ǘƘŜ ŎƻƴǘǊƻƭƭŜǊǎΩ 

workload. Nevertheless, real time measures (over the trajectory) will be required to improve 

reliability, react to unplanned conditions and thus maintain the expected capacity. 

The 4D-trajectory concept is based on the integration of time into the 3D aircraft trajectory, defining 

each point by position (latitude, longitude and flight level) and time. In the same way that there are 

restrictions associated with flight levels, the future operational framework foresees restrictions 

regarding time. It aims to ensure the flight is on a practically unrestricted, optimum trajectory for as 

long as possible in exchange for the aircraft being obliged to meet very accurately an arrival time over 

a designated point. In the context of TBO, Airspace Users (AUs) will agree a preferred trajectory with 

Air Navigation Service Providers (ANSPs) and airport operators (AOs). Aircraft and ground systems will 

exchange information regarding the trajectory and the expected airspace capacity, in order to foresee 

the ability to meet the assigned Controlled Time of Arrival (CTA). 

The benefits of the 4D-trajectory approach on the ATM framework are: (a) improvement of air traffic 

operations reliability by increasing the overall traffic predictability; (b) optimal operations for airlines 

(aircraft using preferred routes and levels); (c) better service provided (due to ground-ground and air-

ground interoperability) and fewer trajectory distortions; (d) potential absorption of delays; (e) 

enhanced safety with less controller workload (fewer conflicts, strategic management, information 

rich environment with data in advance); (f) reduction of costs (e.g. fuel and/or time); (g) increased 

airspace capacity; and (h) reduction of the environmental impact through reduction of emissions and 

noise. To exploit these benefits accurate and reliable trajectory prediction (TP) is required. Enhanced 

traffic forecasts (which integrate uncertainty assessment and include different sources of relevant 

flight information) may enable improved demand-capacity balancing and conflict detection and 

resolution (CD&R) models. Moreover, new methodological approaches, as the exploitation of 

historical data by means of machine learning techniques is expected to boost TP performance. 



   

Engage catalyst fund project final technical report 3 

In this context, the DIAPasON project has been able to develop a methodology framework for TP and 

traffic forecasting in a pre-tactical phase (from a few days to a few hours before the operations, when 

only a limited number of flight plans are available). This has been adjusted to different time scales 

(planning horizons) supporting different operational scenarios, taking into account the level of 

predictability of each of them according to the available data. This step has resulted in an individual 

flight plan predictive model which considers patterns in historical data to provide a pre-tactical 

ǇǊŜŘƛŎǘƛƻƴ ŀƴŘ ƛƴŎƻǊǇƻǊŀǘŜ άǳƴŎŜǊǘŀƛƴǘȅέ ǘƻ ¢ǊŀƧŜŎǘƻǊȅ tǊŜŘƛŎǘƛƻƴ όŀǎ ŀ ǇǊƻōŀōƛƭƛǎǘƛŎ approach), 

incorporating also the possibility to self-calibrate with updated tactical data. 

This way, the project has not just obtained a specific implementation but a data-driven, dynamic and 

adaptive TP framework, suitable for further implementations. It is data-driven as the main project 

outcomes will be based on data analysis and interpretation, dynamic as can be adjusted to different 

planning horizons and adaptive as it can be enhanced iteratively with new tactical data. A fourth 

research objective of ǘƘŜ ǇǊƻƧŜŎǘ ƛǎ ŦƻǊ ǘƘŜ ¢t ŦǊŀƳŜǿƻǊƪ ǘƻ ŀŘŀǇǘ ǘƻ ŘƛŦŦŜǊŜƴǘ !ƛǊǎǇŀŎŜ ¦ǎŜǊǎΩ 

characteristics and strategies. AUs will exhibit different strategies, as far as flight intentions and 

execution are concerned. The project has analysed and unravelled policies and features to apply the 

best TP for each AU according to observations. 

DIAPasON has validated the TP framework in a case study, including interviews to operational staff to 

understand the best way to apply such features. The proposed method aims to anticipate the needs 

of the ATM system; main applications of the model are related to reduction of complexity, demand-

capacity balancing, conflict resolution, separation management, ANSP resource allocation. 

The DIAPasON project has been structured as an extension of the work achieved in previous studies 

and has also reached the targeted TRL4 maturity level (self-assessment). The main results of the 

project are the specific implementation with Spanish data (the project exploring ECAC area capabilities 

as well with existing datasets), the TP methodological framework and the mock-up comprising 

operational staff feedback. 

2. Overview of catalyst project 

2.1 Operational/technical context 
!ǎ ƛƭƭǳǎǘǊŀǘŜŘ ōȅ 9ƴƎŀƎŜΩǎ thematic challenge #2 (https://engagektn.com/thematic-challenges/), 

accurate and reliable trajectory prediction (TP) is a fundamental requirement to support trajectory-

based operations (TBOs). Particularly, the mismatch between planned and flown trajectories (caused 

by operational uncertainties from airports, Air Traffic Control interventions, Airspace Users behaviour 

and changes in flight plan data) act as a driver for shortcomings in flow and capacity management (e.g. 

congestion and suboptimal decision making) and as a precursor for potential safety conflicts. 

Therefore, enhanced traffic forecasts (which integrate uncertainty assessment and include different 

sources of relevant flight information) may enable improved demand-capacity balancing and conflict 

detection and resolution (CD&R) models. Moreover, new methodological approaches, as the 

exploitation of historical data by means of machine-learning techniques is expected to boost TP 

performance. 

2.2 Project scope and objectives 
Traffic prediction is a key element in Air Traffic Management (ATM), as it plays a fundamental role in 

adjusting capacity and available resources to current demand, as well as in helping detect and solve 

potential conflicts [1]. Moreover, the future implementation of the Trajectory Based Operations (TBO) 

concept will impose on aircraft the compliance of very accurately arrival times over designated points 

[2] [3]. In this sense, an improvement in TP aims at enabling an efficient management of the expected 

increase in air traffic strategically, with tactical interventions only as a last resort. To achieve this 

https://engagektn.com/thematic-challenges/
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objective, the ATM system needs tools to support traffic and trajectory management functions, such 

as strategic planning, trajectory negotiation and collaborative de-confliction. In all of these tasks, 

trajectory and traffic prediction represents a cornerstone[4]. 

 

The problem of achieving an accurate and reliable trajectory and traffic prediction has been tackled 

through different methodologies, with different levels of complexity [5][6][7][8][9]. There are two 

main aspects to consider when assessing the most appropriate forecasting methodology: 

¶ Time-horizon. Depending on the timescale (anticipation before the day of operations), the 

level of uncertainty associated to the prediction will be different. 

¶ Input data. Both the source and the quality of the input data (completeness, validity, 

accuracy, consistency, availability and timeliness) are key characteristics when assessing the 

viability of the prediction. 

The main target of the project is the development of a methodology for TP and traffic forecasting in a 

pre-tactical phase (from a few days to a few hours before the operations, when a only limited number 

of flight plans are available). This can be adjusted to different time scales (planning horizons), 

considering the level of predictability of each of them and the specific use case to where it should be 

applied. This initial step delivers a model that considers advanced tactical data to validate/enhance 

the previous pre-tactical prediction and incorporate "uncertainty" to Trajectory Prediction (as a 

probabilistic approach). 

In this way the project has obtained a data-driven, dynamic and adaptive TP framework. Data-driven 

as the main project outcomes is be based on data analysis and interpretation, dynamic as can be 

adjusted to different planning horizons and adaptive as it allows iterative enhancement with new 

tactical data. 

Another objective of the project was, for the TP framework, ǘƻ ŀŘŀǇǘ ǘƻ ŘƛŦŦŜǊŜƴǘ !ƛǊǎǇŀŎŜ ¦ǎŜǊǎΩ 

characteristics and strategies. Our previous works showed that different AUs exhibit different 

strategies, as far as flight intentions and execution are concerned, affecting predictability, even at 

route level in some cases (SESAR P04.07.07, in EXE-04.07.07-VP-006 run in Barcelona ACC; statistical 

analyses carried out as part of the SESAR WPE project ELSA) [10][11]. The implication is that different 

methodologies need to be used to develop the best TP for each AU.  
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2.3 Research carried out 

2.3.1 State-of-the-art 
A summary of the state of the art is provided in order to provide a view on what has been done in this 

part of the research. Note: Some sample references are included as footnote.  

¢ƘŜ ǿƻǊƪǎ ŘŜǾŜƭƻǇŜŘ ŀǊƻǳƴŘ ƻǊƎŀƴƛȊŀǘƛƻƴ ƻŦ ŀƛǊǎǇŀŎŜ ŀǊŜ Ǝƭƻōŀƭƭȅ ŦƻŎǳǎŜŘ ƛƴ ŀŎƘƛŜǾƛƴƎ ŀƴ άƛŘŜŀƭέ 

airspace configuration, for this matter, dynamic sectorisation is considered with the corresponding 

problem of Demand-Capacity balancing. In a more in-depth analysis of the demand, the research is 

fixed in clustering techniques, improving the scope as well as the analysis of the data already available. 

Then, the trajectory prediction is enlarged by considering other type of data apart from the temporal 

and spatial, designated as contextual data. 

From the point of view of clustering, several approaches can be stated. Clusters are formed from 

similar trajectories; this similarity trait requires an extensive analysis of origin/destination pairs, take-

off patterns, weather deviations and any other type of data [9]. Considering a different approach, the 

clusters are formed taking into account the relevant part of the trajectories, relevance is understood 

as a changing variable where markers to each of the route waypoints are assigned and added or 

discarded for each analysis [12]. Contextual data can be chosen to cluster by relevance. Following this 

line, temporal characterization is thought to be of high importance [13], enabling the identification of 

salient traffic and temporal persistent flows. Temporal clustering has been implemented [14] using a 

k-means algorithm, for the classification of arrivals and departures for Multi-Airport Systems. The final 

objective is to obtain a route that can be representative for each cluster, lowering the computational 

requirements.  

In terms of the data available for clustering, Flight Plans are the most important resource and they are 

extremely dependent on the airline, consequently analysis of the behaviour of the airline have been 

developed [15] obtaining patterns that can be posteriorly used for a more accurate prediction. This 

trait is measured with three indices: predictability, reliability and accuracy. 

For further determination of the spatial-temporal state of the aircraft a variety of trajectory prediction 

methodologies have been developed that do not require any specific data of the performance of the 

aircraft, they do require aircraft state data, flight information, historical data or flight information from 

aircraft messaging. Environmental conditions are included in analysis [16]. In recent studies the 

analysis and prediction are developed using Machine Learning techniques. Furthermore, in some 

reference [17] the trajectory (route terminology employed in the paper) is obtained from weighting a 

series of factors; concretely two groups of factors are considered: reaction (constraints to the route) 

and planned (changes in the route utilization). These factors are obtained using a regression model. 

In recent studies the analysis and prediction are developed using Machine Learning techniques [9], 

the Hidden Markov Model is considered among several options. 

An accuracy analysis is consistently associated to the trajectory prediction methods. The confidence 

level of the output is dependent on the quality of information extracted and varies depending on the 

phase of flight due to the difficulty of prediction for each of the phases [18], while in other studies [19] 

a statistical model is used based on empirical observations and a Monte Carlo simulation is conducted. 

Other studies involve the use of a Distributional Robust Optimization formulation [14], the uncertainty 

of the prediction is based on the drawing of information from different uncertain parameters by using 

probabilistic operations. To set the method in place, data is used from the Time Based Flow 

Management system obtaining this way the calibration. 

For the demand-capacity balance instead of considering individual flights the approach is to consider 

a flow allowing independent flow routes, this is the Eulerian-Lagrangian [20] model where the 

optimization is solved using a Model Predictive Controller Technique minimizing the air and ground 

delay. Contrarily if individual flights are taken into account (which is typical for conflict resolution), 
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interacting trajectories can be localized and modified in order to solve this problem, for this purpose 

collaborative reinforcement learning methods have been explored [21]. For the sector configuration 

it is feasible to be obtained through a Branch and Bound algorithm choosing between the 

combinations available [22]. 

 

2.3.2 Predictive model: High-resolution scenario analysis 
The high resolution analysis corresponds to operational data from Spanish Airspace extracted from 

operational ATC platform (SACTA), including highly reliable data such as surveillance or every flight 

plan update. 

In this initial phase of the analysis, a sample of relatively frequent flights (of relatively frequent airlines) 

in January, March and August 2018 is selected. Callsigns flying less than 10 times in a month and 

airlines with less than 200 flights in a month are discarded. These numbers are set accordingly to 

cumulative graphs.  

 

Using this dataset, a clustering process is applied. ¢ƘŜ Ƴŀƛƴ άŘƛǎǎƛƳƛƭŀǊƛǘȅ ƳŜŀǎǳǊŜέ ǳǎŜŘ ƛƴ ǘƘŜ 

analysis is: 

d = 1- (common wp / max wp), where: 

¶ common wp: number of waypoints appearing in both the first and the last Flight Plan of 

each FPkey (last intended as last before estimated off-block time); 

¶ max wp: maximum between the number of waypoints appearing in the first Flight Plan and 

the number of waypoints appearing in the last Flight Plan. 

 

The histogram in Figure 1 represents the distribution of d in the different months. It is clear that 0 is 

the most common value and that the frequency of greater values rapidly decreases as the value 

increases: in particular, more than 70% of the Flight Plans do not show any difference in the first and 

the last path declared and that, in general, only 10% of the Flight Plans shares less than the 50% of 

waypoints between the first and last record before off-block time. 

 
Figure 1: Histogram of the distribution of d in the different months analysed. 
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Furthermore, differences between months do not seem to be really relevant from this perspective. 

March and August behave almost identically, while in January there seem to be slightly smaller values 

of d. 

The variable immediately associated to this d is a DeltaT variable defined as the difference between 

the expected off-block time of a flight and the record time of its first flight plan, in order to 

understand at what level of anticipation (before the beginning of departure operations) the flight plan 

was emitted. 

As can be seen in Figure 2 (Dt is expressed in hours, and the categories are chosen as almost 

homogenous in size), d seems slightly or not dependent on the level of anticipation with which the 

flight plan is registered. In fact, while the first histogram (less than 2 hours before EOBT) is different 

from the others, there is apparently no pattern in the followinƎ ƻƴŜǎΦ ¢ƘŜ ŦŀŎǘ ǘƘŀǘ ǘƘŜ άғнέ ǎŜŎǘƛƻƴ ƛǎ 

composed essentially of observation with d=0 can be also because in many cases the first and last 

flight plan coincide. However, the graph remains meaningful as it shows that flight plans recorded in 

that time slot are almost surely reliable. 

 

 
Figure 2: Representation of DeltaT (Dt) for different anticipations in the reception of the flight plan. 

Another variable which seems not linked to the dissimilarity is the involvement in weather 

phenomena. The same comparison was performed distinguishing different weather conditions, in all 

the three months, leading to the same conclusions. Furthermore, no stable pattern is found also for 

aircraft type. 

 

The distribution of d is also analysed for airlines, airports and routes. To associate a representative 

value of d to a group of flights, one possible choice is to use the average value of the variable in the 

group. The distribution of d is very asymmetrical and consequently the average is mainly determined 

by the highest values, possibly leading to a non-representative estimation. Because the median is 0 

for every airline and airport (in fact, the 70% percentile of d is 0 for almost every subgroup), a possible 

choice is to consider another quantile; the most effective in discriminating the airlines and airports is 

found to be the 80% percentile. 

The following graphs represent airlines in three groups (European Legacy, European Low Cost and 

Non-European). These graphs report the 80% percentile essentially for two reasons: 

¶ This value is assumed by d, while this is not true for the mean. 

¶ It Ƙŀǎ ŀƴ άƻǇŜǊŀǘƛƻƴŀƭέ meaning being x the quantile, it can be said that the 80% of data 

relative to the group assumes values smaller than x. 
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Furthermore, in Figure 3, Figure 4 and Figure 5, the size of every group is indicated. Please be aware 

that these numbers indicate the occurrences in the selected samples (so, for example, infrequent 

flights are discarded) so they are just approximations of the real number of flights. 

 
Figure 3: Representation of the 80th ǇŜǊŎŜƴǘƛƭŜ ŦƻǊ ǘƘŜ DǊƻǳǇ ƻŦ ά9ǳǊƻǇŜŀƴ [ŜƎŀŎȅέ ŀƛǊƭƛƴŜǎΦ 

 
Figure 4: Representation of the 80th ǇŜǊŎŜƴǘƛƭŜ ŦƻǊ ǘƘŜ DǊƻǳǇ ƻŦ ά9ǳǊƻǇŜŀƴ [ƻǿ /ƻǎǘέ ŀƛǊƭƛƴŜǎΦ 

 

 
Figure 5: Representation of the 80th ǇŜǊŎŜƴǘƛƭŜ ŦƻǊ ǘƘŜ DǊƻǳǇ ƻŦ άbƻƴ-9ǳǊƻǇŜŀƴέ ŀƛǊƭƛƴŜǎΦ 

Looking at the graphs above, there seems not to be great differences between the three groups 

(legacy, low cost, non-EU airlines); the major differences are, in fact, within each group. 
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The role of airports, instead, seems more decisive: departures from non-EU airports show lower values 

of d and departures from Madrid ǎƘƻǿ ƳǳŎƘ άƭŜǎǎ ǊŜƭƛŀōƭŜέ ōŜƘŀǾƛƻǳǊǎ ǘƘŀƴ ǘƘŜ ƻther frequent 

airports. 

Arrivals, on the other hand, behave differently: non-EU airports show more variable values of d and 

often also higher values. This distribution is also reflected in the ranking of routes (e.g., flights 

departing from Madrid have higher d-values than flights arriving in Madrid). 

 

Moreover, the Reliability time has been analysed. It is possible to estimate, for each flight number but 

also for each airline, the average time in which the flight plan became identical to the last one, plus a 

Confidence Interval based on the variance and size of data relative to that airline. 

Figure 6 and Figure 7 are representative of the idea: the Ǉƻƛƴǘ ƛǎ ǘƘŜ ŀǾŜǊŀƎŜ άǊŜƭƛŀōƭŜ ǘƛƳŜέ όǎŀƳǇƭŜ 

mean), and the black line is the 95% probability interval of the mean. 

 

 
Figure 6: Reliability time for European Legacy Airlines. 

 
Figure 7: Reliability time for Low Cost Airlines. 

 

Since the previous analysis indicates that the reliability of a flight plan depends essentially on the 

άƛƴǘǊƛƴǎƛŎέ ǇǊƻǇŜǊǘƛŜǎ ƻŦ ǘƘŜ ŦƭƛƎƘǘ ŀƴŘ ƛƴ ǎƻƳŜ ŎŀǎŜǎ ƻƴ ǘƘŜ ǎŜŀǎƻƴΣ ǿƘƛƭŜ ǘƘŜ άŎƻƴǘƛƴƎŜƴŎƛŜǎέ όŜΦƎΦΣ 

weather, hour of the day, day of the week) play no or little role, the prediction presented here is only 

based on historical data; furthermore, this approach emphasizes the role oŦ ǘƘŜ ŎƻƳǇŀƴƛŜǎΩ ǎǘǊŀǘŜƎƛŎ 

reasoning. 
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The prediction is performed for different ɲǘΩǎ όǿƘŜǊŜ ɲǘ is the difference between current time and 

off-block time): 8h, 4h, 2h, 1h. 

For each ɲǘ, the predictive methodology is the following: 

¶ the current flight plan is compared with all the historical flight plans of the same flight (in this 

context, flight = callsign) at the same ɲǘ, selecting all the past single flightΩǎ ǿƘƻǎŜ ǘǊŀƧŜŎǘƻǊƛŜǎ 

coincide with the current one. 

¶ if the current flight plan is not the first one recorded that day, also the previous flight plans 

are compared with the corresponding past ones, discarding from the previously selected 

single flights all the ones that do not match. 

¶ for all the selected single flights, the last-before-off-block-time planned trajectory is 

retrieved. 

¶ the predicted trajectory is the most frequent one in this set. 

 

In this case, this methodology is applied on two sets of data, different form the one used in first place 

for the dissimilarity measure: 

 

¶ data from February 1st to May 31st, 2018 (in the following, denoted as spring) 

¶ data from June 1st to September 30th, 2018 (in the following, denoted as summer) 

 

and only to flights: classified as άwŜƎǳƭŀǊέ, flying at least 3 times a week, pertaining to the most 

frequent airlines, and with average levels of ɲǘ sufficiently high. 

 

To estimate the real usefulness of the prediction, its accuracy is compared with the one of the 

άŘŜŦŀǳƭǘέ ǇǊŜŘƛŎǘƛƻƴ όƛΦŜΦΣ ǘƘŜ ƭŀǎǘ trajectory is predicted to be the current one). Accuracy is the 

percentage of trajectories which are correctly predicted for each flight (see Table 1 and Table 2). 

 

SPRING 8h 4h 2h 1h 

average default accuracy 76% 75% 82% 86% 

average prediction accuracy 82% 82% 85% 87% 

Table 1: Average Default and Predicted Accuracy in the different time horizons for the spring dataset analysed. 

In spring the prediction is able, on average, to anticipate at ɲǘ Ґ у the accuracy that the default 

prediction has at time ɲǘ Ґ н, so it reaches the same level of certainty 6 hours before. 

 

SUMMER 8h 4h 2h 1h 

average default accuracy 88% 76% 83% 88% 

average prediction accuracy 92% 85% 87% 90% 

Table 2: Average Default and Predicted Accuracy in the different time horizons for the summer dataset analysed. 

It is important to remark the fact that the smallest accuracies appear in ɲǘ Ґ п and not in ɲǘ Ґ у can 

probably be explained with the fact that not all the flights considered record flight plans with the 

anticipation of ɲǘ Ґ у every day, so the values are computed on slightly different samples (and it can 

be reasonable to suppose that the sample relative to ɲǘ Ґ у ƛǎ ǎƻƳŜƘƻǿ ƳƻǊŜ άǊŜƭƛŀōƭŜέύΦ CƻǊ ǘƘƛǎ 

reason, ɲǘ Ґ у in these tables can be considered as a world apart. 
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Relative improvement in accuracy is computed for each callsign as follows: 

(callsign prediction accuracy - callsign default accuracy) / callsign default accuracy 

As could be expected, the relative improvement in accuracy is greater for and ɲǘ Ґ п than for the 

smallest ɲǘΩǎΣ ƛƴ ōƻǘƘ ǘƘŜ ǎŜŀǎƻns. 

 

SPRING 8h 4h 2h 1h 

average relative improvement 23% 29% 10% 6% 

Table 3: Average Relative Improvement in the different time horizons for the spring dataset analysed. 

SUMMER 8h 4h 2h 1h 

average relative improvement 13% 59% 23% 13% 

Table 4: Average Relative Improvement in the different time horizons for the summer dataset analysed. 

 
Figure 8: Comparison between default and predicted accuracy. 

In Figure 8, prediction accuracy (in blue) and default accuracy (dashed line) at ɲǘ Ґ уƘ in spring are 

represented (this representation is consistent with other ɲǘΩǎ and seasons). In view of this, three main 

considerations arise: 

¶ the distribution of prediction accuracy is concentrated on highest values in general. 

¶ the prediction accuracy has a negligible percentage of values lower of 0.5, so the biggest 

difference with the default accuracy is with regards to the lowest values. 

¶ if values greater than 90% are concerned, the two densities appear almost overlapped. 

 

So, the main conclusion seems to be that this prediction is particularly useful in enhancing accuracy 

ŦƻǊ άǾŜǊȅ ǳƴǇǊŜŘƛŎǘŀōƭŜέ ŦƭƛƎƘǘǎΣ ǿƘƛƭŜ ŦƻǊ ǾŜǊȅ ǊŜƎǳƭŀǊ ŦƭƛƎƘǘǎ ǘƘŜ default choice and the prediction are 

almost always the same. 

 

This conclusion is confirmed by the correlation between the default accuracy and the relative increase 

due to the prediction, clearly represented in Figure 9 (ɲǘ Ґ пƘ): 

In the following, results about relative improvement are often reported only for ɲǘ Ґ пƘ. The reason 

is that this ɲǘ is computed on a larger sample than ɲǘ Ґ уƘ, and at the same time the differences in 

relative improvement are more visible than for ɲǘ Ґ нƘ and 1h. 
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Figure 9: Correlation between default accuracy and relative improvement for the ɲǘ Ґ пƘ time horizon. 

From Figure 9, it is also possible to understand the global distribution of the relative increase: the 

most frequent value is 0 and, though there are some (very few) negative values (which means, cases 

in which the default prediction would suggest the right trajectory while our prediction fails), the 

ƎŜƴŜǊŀƭ ƳŜŀƴ ƛǎ άǇǳǎƘŜŘ ǳǇέ ōȅ ǘƘŜ Ƴŀƴȅ ƘƛƎƘ ǾŀƭǳŜǎΦ ¢ƘŜ maximum is around 800%, which means 

there are flights for which the accuracy of our prediction is 8 times greater than the default (e.g., 0.1 

of default accuracy and 0.8 of prediction accuracy). 

 

Now, we have a look at how the prediction accuracy is distributed with regards to airlines. These 

graphs are referred to spring; summer graphs are not reported since there are no meaningful 

differences. For the comparison to be meaningful, ɲǘ Ґ уƘ was not represented, for the previously 

explained reasons. 

 

Figure 10 and 11: Average prediction accuracy for European Legacy and Low-Cost airlines. 

Three main considerations arise: 

¶ In most of the airlines the prediction accuracy increases as ɲǘ decreases. 

¶ There are some slight differences between airlines, but basically the prediction reaches a 

similar level of accuracy in for all the airlines, apparently without any bias. 

¶ The level of accuracy is, on average, over 80% for the great majority of airlines. 
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What is probably of major interest is to evaluate the average relative improvement in accuracy for 

each airline. In fact, this value is informative: if it is high, it means that the unpredictability of that 

ŀƛǊƭƛƴŜ ƛǎ άǎȅǎǘŜƳŀǘƛŎ ŜƴƻǳƎƘέ ǘƻ ōŜŎƻƳŜ ǇǊŜŘƛŎǘŀōƭe, and so it is likely to be part of a strategy. 

 

Graphs are relative to ɲǘ Ґ пƘΣ ōƻǘƘ ǎŜŀǎƻƴǎΦ The number of flights involved in the analysis is reported 

next to each bar. The horizontal axes have different scales in the two seasons since the relative 

improvement in summer has highest values. European airlines show a clear behaviour: Air Europa, 

Alitalia and Air Nostrum (legacy) and Vueling, Ryanair and Iberia Express (low cost) have significantly 

higher values than the others, in both the seasons. Also, the companies with the smallest values are 

consistent in the two seasons. The aforementioned airlines show the same behaviour also when we 

compare them with other airlines traveling on the same routes, as represented in Figure 11: 

 

 
Figure 11: Comparison between airlines flying the same route in the spring period analysed. 

By means of the previously described predictive model, it is possible to estimate the probability of 

change of every flight (given that the flight is a regular and frequent one).  

The following graph (Figure 12: Average probability of change of Lufthansa for ɲǘ Ґ пƘ ŦƻǊ ŘƛŦŦŜǊŜƴǘ 

routes during the diurnal shift. is relative to the diurnal shift and it is referred to ɲǘ Ґ пƘ. Callsigns with 

average probability of change less than 0.01 are not shown. 
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Figure 12: Average probability of change of Lufthansa for ɲǘ Ґ пƘ ŦƻǊ ŘƛŦŦŜǊŜƴǘ ǊƻǳǘŜǎ ŘǳǊƛƴƎ ǘƘŜ ŘƛǳǊƴŀƭ ǎƘƛŦǘΦ 

Furthermore, the probability of change is not independent of the route; in Figure 13 and Figure 14, it 

is clear that the same airlines can behave in quite different ways on different routes, while on the 

same route, different airlines tend to behave in similar ways. 

 

 
Figure 13: Average probability of change in the route LEMD-LEBL for the airlines: Vueling, Air Europa and Iberia. 

 

 
Figure 14: Average probability of change in the route LEPA-LEBL for the airlines: Vueling, Air Europa and Ryanair. 

Another observation that deeper analyses suggest is that flights departing from some airports 

(especially the biggest ones) seem to have higher probability of change, e.g. LEMD. 

 

2.3.3 Predictive model: Low-resolution scenario analysis 
This scenario is referred to ECAC area, trying to apply similar analysis. Is to be noted that the European-

wide data source (DDR ς Demand Data Repository) is a determinant factor in what can be applied. The 

project has tried to illustrate the result all applying a similar approach to this scenario, for reference. 

In order to render the low-resolution analysis comparable with the high-resolution one, we needed to 

find the correspondent definition of waypoints; to do so, we compared the trajectory description of 
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DDR with the one in the data from the first scenario, whenever the same flights are involved (i.e., 

flights whose entire trajectory pertains to Spanish airspace). 

 

Here is an example from the 1st of June 2018, a flight from Madrid to Valencia: 

- high-res (spatial) trajectory description:  

MD14L; MD050;  MD035;  NANDO; MINGU; ABOSI; CLS; OPERA;  VLCT 

- low-res trajectory description: 

20180601142400:LEMD:NANDO1U:20:0:A:402820N0033339W::Y 

20180601142415::DCT:25:1:V:402759N0033304W:14:Y 

20180601142443::DCT:35:4:V:402657N0033121W:57:Y 

20180601142513:*MD50:NANDO1U:48:7:D:402554N0032937W::Y 

20180601142517::DCT:50:8:V:402538N0032900W:6:Y 

20180601142600::DCT:70:13:V:402415N0032558W:38:Y 

20180601142645::DCT:90:19:V:402237N0032219W:75:Y 

20180601142709:*MD35:NANDO1U:100:23:D:402131N0031953W::Y 

20180601142820::DCT:130:35:V:401902N0031206W:11:Y  

ΧΦ 

 

This kind of behaviour is rather systematic, so to apply the model to the new scenario we used as 

waypoints the information in the second field of the variable. The low-resolution model was built by 

mimicking the high-resolution one, with the necessary adaptations. In fact, since in this scenario we 

only have one flight plan per day, the predicted trajectory is the most probable one given the flight 

plan of the day before. 

 

The model, as in the high-resolution case, has two main functionalities:  predict if the trajectory will 

change and predict the final trajectory (and its probability). The following results are relative to about 

8000 flights (i.e., the ones flying every day) in June 2018. 

The model was tested on the last week of the month; for each test day, all the preceding ones are 

used as training set. This assessment methodology is slightly different from the one adopted in the 

high-res scenario since in this case the order of days is absolutely not negligible. 

 

For each flight, the predictive accuracy of the model was computed. The performance on low-

resolution scenario is - quite predictably - lower than the high-resolution one. The main reason for this 

is the probability of change: 

¶ In the high-res scenario, we compared the last-before-eobt trajectory with the flight plan 

recorded 2h/4h/8h before, and in the vast majority of cases the input trajectory was already 

reliable, with a probability of change on average around 20%; 

¶ In this low-ǊŜǎ ǎŎŜƴŀǊƛƻΣ ǿŜ ŎƻƳǇŀǊŜ ǘƻŘŀȅΩǎ ǘǊŀƧŜŎǘƻǊȅ ǿƛǘƘ ȅŜǎǘŜǊŘŀȅΩǎ ƻƴŜΣ ŀƴŘ the 

probability of change is on average 55%. 

 

Furthermore, this change rate (and therefore also the accuracy of the model) is distributed in quite an 

uneven fashion. Figure 15 ǎƘƻǿǎ ǘƘŜ ŘƛǎǘǊƛōǳǘƛƻƴ ƻŦ ŀƛǊƭƛƴŜǎΩ ŎƘange rate, from which there are a huge 

amount of extreme values. 
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Figure 15Υ !ƛǊƭƛƴŜΩǎ ŎƘŀƴƎŜ ǊŀǘŜΦ 

For this reason, the median accuracy is considered, instead of the average one, since is more robust 

to extreme values: 

¶ Median accuracy per flight of the model: 67% 

¶ Median accuracy per flight without the model: 33% 

 

As in the high-resolution case, we can retrieve some interesting information on airlines by looking at 

the distribution of the average relative improvement per airline. The median value is around 500% 

(e.g., if the probability of correctly predicting ǘƻƳƻǊǊƻǿΩǎ ǘǊŀƧŜŎǘƻǊƛŜǎ ŦƻǊ ŀƴ ŀƛǊƭƛƴŜ Ƨǳǎǘ ǘǊǳǎǘƛƴƎ ǘƻŘŀȅΩǎ 

trajectories is 15%, on median thanks to the model it will be 75%). Also, in this case, values are actually 

very spread, and a central value cannot be representative. 

 

Figure 16 shows the average relative improvement of some airlines. In general, all the values range 

between 0 and 3. Notice the x-axis is not expressed in percentage (e.g., 3 is 300%). 

 

 
Figure 16: Average relative improvement of some airlines. 

 




































