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1. Abstract and eecutivesummary

1.1 Abstract

The DIAPasON project focuses on the need of the ATM system to develop tools and methodologies
which are able to support traffic and trajectory management functions. For these activities, trajectory
and traffic pediction is key, in particular within the context of Traject@gsed Operations (TBO).
While previous research exists addressing these matters, DIAPasON presents a different approach. In
particular, the project aims at analysing patterns of flight plaoletion for individual flights, and
extract patterns and feature which can be applied in a wide number of operational contexts where
this information is available. The main result of the project is the development of a methodology for
trajectory prediction and traffic forecasting in a pitactical phase (from a few days to a few hours
before the operations, when a only limited number of flight plans are available). This can be adjusted
to different time scales (planning horizons), considering the levetexfictability of each of them and

the specific use case to where it should be applied. These results have been explored with support of
operational staff to maximise the benefits in the peectical phase.

1.2 Executive summary

To face the increasing d@maffic demand, the future Air Traffic Management (ATM) system will rely on

the Trajectory Based Operations (TBO) approach, which will require aircraft to follow an assigned 4D
trajectory (timeconstrained trajectory) with high precision. TBO involvesassng aircraft via

strategic (longterm) trajectory definition, rather than the currentlgracticed tactical (shoriterm)

O2y Ft AO00 NBaz2fdziaAz2yd ¢KS YIFAyYy 32 ¢ Aad G2 AYyONB|
workload. Nevertheless, real time measures (over the trajectory) will be required to improve
reliability, react to unplanned conditis and thus maintain the expected capacity.

The 4Dtrajectory concept is based on the integration of time into the 3D aircraft trajectory, defining
each point by position (latitude, longitude and flight level) and time. In the same way that there are
restrictions associated with flight levels, the future operational framework foresees restrictions
regarding time. It aims to ensure the flight is on a practically unrestricted, optimum trajectory for as
long as possible in exchange for the aircraft being edltp meet very accurately an arrival time over

a designated point. In the context of TBO, Airspace Users (AUs) will agree a preferred trajectory with
Air Navigation Service Providers (ANSPs) and airport operators (AOs). Aircraft and ground systems will
exchange information regarding the trajectory and the expected airspace capacity, in order to foresee
the ability to meet the assigned Controlled Time of Arrival (CTA).

The benefits of the 4firajectory approach on the ATM framework are: (a) improvementiofraffic
operations reliability by increasing the overall traffic predictability; (b) optimal operations for airlines
(aircraft using preferred routes and levels); (c) better service provided (due to gigrnoniehd and air
ground interoperability) and feer trajectory distortions; (d) potential absorption of delays; (e)
enhanced safety with less controller workload (fewer conflicts, strategic management, information
rich environment with data in advance); (f) reduction of costs (e.g. fuel and/or timehdigased
airspace capacity; and (h) reduction of the environmental impact through reduction of emissions and
noise. To exploit these benefits accurate and reliable trajectory prediction (TP) is required. Enhanced
traffic forecasts (which integrate uncaihty assessment and include different sources of relevant
flight information) may enable improved demawdpacity balancing and conflict detection and
resolution (CD&R) models. Moreover, new methodological approaches, as the exploitation of
historical da by means of machine learning techniques is expected to boost TP performance.
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In this context, the DIAPasON project has been able to develop a methodology framework for TP and
traffic forecasting in a préactical phaseffom a few days to a few hours et the operations, when

only a limited number of flight plans are availablélhis has been adjusted to different time scales

(planning horizons) supporting different operational scenarios, taking into account the level of
predictability of each of themaording to the available datahit stephas resulted in an individual

flight plan predictive model which considers patterns in historical data to promigeetactical
LINBRAOQUGA2Y YR AYO2NLI2NF GS dadzy OSNI I A gppréaéh), G2 ¢ NI
incorporating also the possibility to selélibrate with updated tactical data.

This waythe project hasot justobtained a specific implementatiobut a datadriven, dynamic and

adaptive TP framework, suitable for further implementatiorisisidatadriven as the main project

outcomes will be based on data analysis and interpretation, dynamic as can be adjusted to different
planning horizons and adaptive as it can be enhanced iteratively with new tactical data. A fourth
research objective ofif KS LINP2SOG A& F2N) G4KS ¢t FNIYSg2N] 0
characteristics and strategies. AUs will exhibit different strategies, as far as flight intentions and
execution are concerned.he project has analysed and unravelled policiesfaatlres to applythe

best TP for each Aaktcording to observations

DIAPasONKasvalidated the TP frameworkn a case studyincluding interviews to operational staff to
understand the best way to apply such featurg&se proposed method aims to anticipathe needs
of the ATM system; main applications of the model are reldatetbduction of complexity, demand
capacity balancing, conflict resolution, separation management, ANSP resource allocation.

The DIAPasON projeleas beerstructured as an extensioof the work achieved in previous studies
and has also reached the targeted TRL4 maturity level-dsessment)The main results of the
project are the specific implementation with Spanish data (the project expl&@WC area capabilities
as wellwith existing datasets), the TP methodological framework and the rupckcomprising
operational staff feedback.

2. Overviewof catalyst poject

2.1 Operational/technical context

1'a Af f dza i NI (tieRaticalallenge/ 2 H{tBS/@@uagekin.com/thematiechallenges),
accurate and reliable trajectory prediction (TP) is a fundamental requirement to support trajectory
based operations (TBOs). Particularly, thematch between planned and flown trajectories (caused
by operational uncertainties from airports, Air Traffic Control interventions, Airspace Users behaviour
and changes in flight plan data) act as a driver for shortcomings in flow and capacity manafgegen
congestion and suboptimal decision making) and as a precursor for potential safety conflicts.
Therefore, enhanced traffic forecasts (which integrate uncertainty assessment and include different
sources of relevant flight information) may enable mmyped demanecapacity balancing and conflict
detection and resolution (CD&R) models. Moreover, new methodological approaches, as the
exploitation of historical data by means ofachinelearning techniques is expected to boost TP
performance.

2.2 Project sope and tbjectives

Traffic prediction is a key element in Air Traffic Management (ATM), as it plays a fundamental role in
adjusting capacity and available resources to current demand, as well as in helping detectiee
potential conflict1]. Moreover, the future implementation of the Trajectory Based Operations (TBO)
concept will impose on aircraft the compliance of very accurately arrivaistiover designatedoints

[2] [3]. In this sense, an improvement in TP aims at enabling amesff management of the expected
increase in air traffic strategically, with tactical interventions only as a last resort. To achieve this
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objective, the ATM system needs tools to support traffic and trajectory management functions, such
as strategic plaming, trajectory negotiation and collaborative -genfliction. In all of these tasks,
trajectory and traffic prediction represents arnerstond4].

The problem of ehieving an accurate and reliable trajectory and traffic prediction has been tackled
through different methodologies, witllifferent levels of complexity5][6][7][8][9]. There are two
main aspects to consider when assessing the most appropriate forecasting methodology:

1 Timehorizon. Depending on thiémescale(anticipation before the day of operations), the
level of uncertainty associated to the prediction will be different.

91 Input data. Both the source and the quality of the input data (completeness, validity,
accuracy, consistency, availability and time$s) are key characteristics when assessing the
viability of the prediction.

The main targeof the projectis the development of a methodology for TP and traffic forecasting in a
pre-tactical phaseffom a few days to a few hours before the operationwben a only limited number

of flight plans are available)Thiscan be adjusted to different time scales (planning horizons),
consideringhe level of predictability of each of theand the specific use case to where it should be
applied This initial stemeliversa model that considers advanced tactical data to validate/enhance
the previous pretactical prediction and incorporate "uncertainty" to Trajectory Prediction (as a
probabilistic approach).

In this way the project has obtaineddatadriven, dynant and adaptive TP frameworRata-driven

as the main project outcomeis be based on data analysis and interpretation, dynamicasbe
adjusted to different planning horizons and adaptive aallibws iterative enhancemenwith new
tactical data.

Another objective of the projecwas, for the TP frameworkii 2 F Rl LJG (2 RAFTFSNBy
characteristics and strategies. Our prevdoworks showd that different AUs exhibit different
strategies, as far as flight intentions and execution are concerned, affecting predictability, even at
route level in some cases (SESAR P04.07.07, i6E07VR006 run in Barcelona ACC; statistical
analyses carried out as part of the SESAR WrojectELSA]10][11]. The mplication is that different
methodologies need to be used to develop the best TP for each AU.
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2.3 Research carried out

2.3.1 Stateof-the-art

A summary of the state of the art is provided in order to provide a view on what has been done in this
part ofthe researchNote: Some sample references are included as footnote.

¢tKS 62Nl a RSOSt2LISR FNRdzyR 2NBIFIYyATFGA2y 2F | ANA
airspace configuration, for this matter, dynamic sectorisation is considered with tliespmnding
problem of DemanéCapacity balancing. In a moredepth analysis of the demand, the research is
fixed in clustering techniques, improving the scope as well as the analysis of the data already available.
Then, the trajectory prediction is entged by considering other type of data apart from the temporal

and spatial, designated as contextual data.

From the point of view of clustering, several approaches can be stated. Clusters are formed from
similar trajectories; this similarity trait requires extensive analysis of origin/destination pairs, take

off patterns, weather deviations and any other type of dfgth Considering a different approach, the
clusters are formed taking into account the relevant part of the trajectories, relevance is understood
as a changing variable where markers to each of the route waypoints are assigned and added or
discarded for each analygik2]. Contextual data can be chosen to cluster by relevance. Following this
line, temporal characterization is thought to be of high importafi&, enabling the identification of
salient traffic and temporal persistent flows. Temporal clustering has been implemghtg¢dsing a
k-means algorithm, for the classification of arrivals and departures for Miiftiort Systems. The final
objective is to obtain a route that can be representative for each cluster, lowering the computational
requirements.

In terms of the dataaailable for clustering, Flight Plans are the most important resource and they are
extremely dependent on the airline, consequently analysis of the behaviour of the airline have been
developed[15] obtaining patterns that can be posteriorly used for a more accurate prediction. This
trait is measured with three indices: predictability, reliability and accuracy.

For further determination of the spatidémporal state othe aircraft a variety of trajectory prediction
methodologies have been developed that do not require any specific data of the performance of the
aircraft, they do require aircraft state data, flight information, historical data or flight information from
aircraft messaging. Environmental conditions @meluded in analysi$l6]. In recent studies the
analysis and predictioare developed using Machine Learning tedjunés. Furthermore, in some
reference[17] the trajectory (route terminology employed in the paper) is obtained from weighting a
series of factors; concretely two grps of factors are considered: reaction (constraints to the route)
and planned (changes in the route utilization). These factors are obtained using a regression model.
In recent studies the analysis and predictiare developed using Machine Learning teajunes[9],

the Hidden Markov Model is considered among several options.

An accuracy analysis is consistently associated to the trajectory prediction methods. The confidence
level of the output is deperght on the quality of information extracted and varies depending on the
phase of flight due to the difficulty of prediction for each of the phd4&$ while in othe studieg[19]

a statistical model is used based on empirical observations and a Monte Carlo simulation is conducted.
Other studies involve the use of a DistributgRobust Optimization formulatidi4], the uncertainty

of the prediction is based on the drawing of information from different uncertain parameters by using
probabiistic operations. To set the method in place, data is used from the Time Based Flow
Management system obtaining this way the calibration.

For the demanetapacity balance instead of considering individual flights the approach is to consider
a flow allowingindependent flow routes, this is the Euleriagrangian20] model where the
optimization is solved using a Model Predictive Controller Technique minimizingrtaedaground

delay. Contrarily if individual flights are taken into account (which is typical for conflict resolution),
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interacting trajectories can be localized and modified in order to solve this problem, for this purpose
collaborative reinforcement leaing methods have been exploré2il]. For the sector configuration

it is feasible to be obtained through a Branch and Bound algorithm choosing between the
combinatians availabld22].

2.32 Predictive modeHighresolutionscenaricanalysis

The high resolution analysis corresporidsoperational data from Spanishirspace extracted from
operational ATC platform (SACTA), including highly reliable data such as surveillance or every flight
plan update.

In this initial phase of the analysissample of relatively frequent flights (of relatively frequent airlines)

in January, March and August 2018 selected Gallsigns flying less than 10 times in a month and
airlines with less than 200 flights in a month are discarded. These numbers are set accordingly to
cumulative graphs.

Using this dataset, a clustering processapplied.¢ KS YIFIAYy AGRA&ZAAYAT I NRGE Y
analysis is
d = X (common wp / max wp) where:
1 common wp number of waypoints appearing in both the first and the last Flight Plan of
each FPkey (last intended last before estimated offblock time);
1 max wp maximum between the number of waypoints appearing in the first Flight Plan and
the number of waypoints appearing in the last Flight Plan.

The histogramin Figurel represents the distribution odl in the different months it is clear that 0 is

the most common value and that the frequency of greater values rapidly decreases as the value
increases: in particular, more that®% of the Flight Plans dwot show ary differencein the first and

the last path declared and that, in general, only 10% of the Flight Plans shares less than the 50% of
waypoints between the first and last record before-bfbck time.
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Figurel: Histogram of thelistribution of d in the different months analysed.
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Furthermore, differences between montli® notseem to be really relevaritom this perspective

March and August behave almost identically, while in January there seem to be slightly smaller values
of d.

The variable immediately associated to tHis aDeltaTvariable defined as thdifference between

the expected offblock time of a flight and the record timeof its first flight plan in order to
understand at what level of anticipation (before the lmagng of departure operations) the flight plan

was emitted.

As can be seen iRigure2 (Dt is expressed in hours, and the categories are chosen as almost
homogenous irsize),d seems slightly or not dependent on the level of anticipation with which the
flight plan is registered. In fact, while the first histogram (léss 2 hours beforeEOBT is different

from the others, there is apparently no pattern in the follo@in 2y Sa® ¢ KS FIF 00 GKI G
composed essentially of observation wilk0 can be alsbecausein many cases the first and last
flight plan coincide. However, the graph remains meaningful as it shows that flight plans recorded in
that time slotare almost surely reliable.
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Figure2: Representation of DeltaT (Dt) for different anticipations in the reception of the flight plan.

Another variable which seemsot linked to the dissimilarity is thénvolvement in weather
phenomena The same comparison was performed distinguishing different weather conditions, in all
the three months, leading to the same conclusions. Furthermore, no stable pattern is found also for
aircraft type.

The dstribution ofd is also analysetbr airlines,airports and routes To associate a representative
value ofd to a group of flights, one possible choice is to use the average value of the variable in the
group. The distribution ofd is very asymmetricalnd consequentlyhe average is mainly determined
by the highest values, possibly leading to a-nepresentative estimationBecausé¢he median is 0
for every airline and airporirg fact the 70% percentilef dis O for almost every subgroup), a possible
choice is to corider another quantile; the moffective indiscriminating the airlines and airports is
foundto be the 80% percentile.
The following graphsepresent airlines in three groups (European Legacy, European Low Cost and
Non-European). These grapteport the 80% percentile essentially for two reasons:

9 Thisvalue isassumedby d, while this is not true for thenean.

1 ItKF & 'y & 2mdSnimibéirg 2 tfid quantile, it can be said that the 80% of data

relative to the group assumes values smaller than x.
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Furthermore, inFigure3, Figure4 and Figureb, the size of every group is indicated. Please be aware
that these numbers indicate the occurrences in the selected samples (so, for example, infrequent
flights are discarded) so they are jagiproximations of the real number of flights.

European Legacy

a9 dzNR LISt y

TAP Portugal [N 17309
Tuninter{— [ I NG 165t
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w Brussels Airlines| [ 2341
= British Airways1 I 402
o European Air Transport{ I 2024
< Turkish Airfines{ I 1269
Swissair{ I 2408
Lufthansa| I 5916
KLM Royal Dutch Airines{ Iy 2675
Norwegian Air International{ Iy 3958
Alitaiia] I 1262
AirEuropa{ [ 15752
Iberia Airlines| I 17012
Air Nostrum [, 12744
0.0 0.1 02 0.3 04 05
80th percentile of d
Figure3: Representation of the SIS NDSy G At S F2NJ 6 KS DNRdzL) 27F
European Low Cost
EasyJet Switzerland{ [ NG 575
Ryanair{ [N EEE :::c7
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Figure4: Representation of the 80LIS NO Sy (A f S FT@&NPR WISy DN2dzLY 2F G & 9 ANI Ay Se
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Figure5: Representation of the 80LIS NSy G At S T2 pMIdINRSISD NE dzLIJ ANE A g/ HE21yD

Looking at the graphs above, there seems not to be great differences between the three groups
(legacy, low cosnon-EU airlines); the major differences are, in fact, within each group.
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The role of airports, instead, seems more decisive: departures frorthbairports show lower values
of d and departuresfrom Madrid & K 2 g

airports.

Y dzO K

at Saa

NB f A lthertfrégéientd SK I O A z

Arrivals,on the other hand behave differently: no#iEU airports show more variable valuesdadnd
often also higher valuesThis distribution is also reflected in the ranking of routes (e.g., flights
departing from Madrid have higer d-values than flights arriving in Madrid).

Moreover, theReliability timehas beeranalysedlt is possible to estimate, for each flight number but
also for each airline, the average time in which the fliglain became identical to the last one, plus a
Confidence Interval based on the variance and size of data relative to that airline.

Figure6 and Figure7 arerepresentative of the idea: theJ2 A y (i

A a

mean), and the black line is th@5% probability interval of the mean.
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Figure6: Reliability time for European Legacy Airlines
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Figure7: Reliability time for Low Cost Airlines

Since the previousnalysisindicates that the reliability of aflight plan depends essentially on the

GAYUNRYAAOOKEINFILIBNEKASAYRTAY

a2YysS Ol asSa

GKS &

2y

weather, hour of the day, day of the week) play no or little role, ghediction presentedhere is only
based on historical data; furthermore, this approach emphasizesthele d KS O2 YLI YA SaQ

reasoning.
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The prediction is performed for differemt @ & 0 @ Bs3hNeBifference between current time and
off-block time): 8h, 4h, 2h, 1h.
For eachn {ithe predictive methodology is the following:

1 the currentflight planis compared with all the historic#light plansof the same flight (in this
context, flight =callsign) at the samg fiselecting all the pastingle flightQa ¢ K2aS GNJI 2SO
coincide with the current one

9 if the currentflight planis not the fist one recorded that day, also the previdilight plans
are compared with the corresponding past ones, discarding from the previously selected
single flights all the ones thatlo notmatch

1 for all the selectedsingle flights, the lastbefore-off-blocktime planned trajectory is
retrieved

91 the predicted trajectory is the most frequent one in this set.

In this case,Hlis methodology is applied on two sets of dad#ferent form the one used in first place
for the dissimilarity measure

9 data from Februarist to May 31st, 2018 (in the following, denotedsgsing
9 data from June 1st to September 30th, 2018 (in the following, denotexdiasner)

and only to flightscclassified ast w S 3 gffihg ME least 3 times a weepertaining to the most
frequent aifines, andwith average levels gf $ufficiently high

To estimate the real usefulness of the prediction, its accuracy is compared with the one of the
GRSTFI dzZf (¢ LINBR Arfdctbrg i predictetiSoblie thé suBentfoheficturacyis the
percentage of trajectories which are correctly predicted for each fligaeTablel and Table2).

SPRING 8h 4h 2h 1h
averagedefault accuracy 76% 75% 82% 86%
averagepredictionaccuracy 82% 82% 85% 87%

Tablel: Average Default and Predicted Accuracy indifferent time horizons for the spring dataset analysed.

In springthe prediction is able, on average, tnticipate atn i the agcuracy that the default
prediction has at timen (i , §o it reaches the same level of certainty 6 hours before.

SUMMER

8h

4h

2h

1h

averagedefault accuracy

88%

76%

83%

88%

averagepredictionaccuracy

92%

85%

87%

90%

Table2: Average Default and Predicted Accuracy in the different time horizons for the summer dataset analysed.

It isimportant to remark he fact that the smallest accuracies appeanini  dnd ot inp
probably be explained with the fact that not all the flights considered record flignts with the

anticipation ofpn i  dveryyday, so the values are comedton slightly different samples (and it can
be reasonable to suppose that the sample relativetdi

reasonn U if thege tables can be considered as a world apart.
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Relative improvement in accuracycemputed for each callsign as follows:

(callsignpredictionaccuracy- callsigndefault accuracy) callsigndefault accuracy

As could be expected, the relative improvement in accuracy is greater fonand than for the

smallesn@a> Ay o02siK GKS aSl az
SPRING 8h 4h 2h 1h
averagerelative improvement 23% 29% 10% 6%

Table3: Average Relative Improvement in the different time horizons for the spring dataset analysed.

SUMMER 8h 4h 2h 1h

averagerelative improvement

13% 59% 23% 13%

In Figure8, prediction accuracyin blue) anddefault accuracydashed linepat p {

Table4: Average Relative Improvement in the different time horizons for the summer dataset analysed.

Default VS Prediction accuracy

Density

0.00 0.25 0.50 0.75 1.00
Accuracy

Figure8: Comparison between default and predicted accuracy.

lin sprifigare

represented (this representation is consistent with otpet ahdseasony. In view of this, iree main
considerations arise:

)l
|l

the distribution ofpredictionaccuracy is concentrated on highest values in general

the prediction accuracy has a negliggbpercentage of values lower of 0.5, so the biggest
difference with thedefault accuracy is #h regardsto the lowest values

if values greater than 90% are concerned, the two densities appear almost overlapped.

So, the main conclusion seems to be that thiedictionis particularly useful in enhancing accuracy

FT2NJ a OSNE

dzy LINSRA OG0t S¢ T Wefablitciioieand théphediciond@e@ NJ @S NE

almost always the same.

This conclusion is cfirmed by the correlation between the default accuracy and the relative increase

due to the prediction, clearly representedfigure9 (n G4 J:
In the following, resilts aboutrelative improvementare often reported only fon U
is that thisn iis computed on a larger sample thanii
relative improvement are more visible than forii

n K

['Tharé&ason
['andyaKthe same time the differences in
Aand BhK
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AIRLINE

Correlation between default accuracy and relative increase
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Figure9: Correlation between default accuracy and relative improvemerthéon (i timerhétizon.

FromFigure9, it is also possible to understand the global distribution of the relative incrabse:
most frequent value is @nd, though there are some (very few) negative values (whichnsezses
in which the default prediction would suggest the right trajectory while our prediction fails), the

I3SYSNIf YSIyYy Aada aLidza KSR dehdmurd 8 araudB00%highémedod I K O f

there are flights for which the accuracy of our predn is 8 times greater than the default (e.g., 0.1
of default accuracy and 0.8 of prediction accuracy).

Now, we have a look at how therediction accuracyis distributedwith regards toairlines. These
graphs are referred tepring, summer graphs are maeported since there are no meaningful
differences.Forthe comparison to be meaningfyh, i  Twasynét represented, for the previously
explained reasons.

European Legacy European Low Cost

Air Nostrum
e ——
Norwegian At lntemedional g Al | e ——
Air Europa _——
Iberia Express
Swissai 1 |
e _
Lufthansa Norwegian Air Shuttle _———
Alitalia
]
Scandinavian Airlines System Jet2.com
85y g il — At(h)
European Air Transport z —_— 1
= - Transavia Holland .
Iberia Airines - 4 I 2
< e | B
Aer Lingus easyJet
Brussels Airlines
EEeTe———
Britishi Alrways RN e ——
KLM Royal Dutch Airines e
Eurowings
Turkish Airiines s ————————————]
. a8 A e | e ——
Air France
T T 75 o T 0.00 025 050 0.75 1.00
Average prediction accuracy Average prediction accuracy

FigurelOand 11 Average prediction accuracy for European LegadyLav-Costairlines

Three main consideratioregise
f In most of the airlines the prediction accuracy increases @ecreases
1 There are some slight differences between airlines, but basitayprediction reaches a
similar level of accuracy in for all the airlines, apparently without any bias
1 The level of accuracy is, on average, over 80% for the great majority of airlines.

Engage catalyst fungrojectfinal technical report 12



What is probably of major interest is to evaluate theerage relative improvemenin accuracy for
each airline In fact, this value imformative if it is high, it means thahe unpredictability of that
FANIAYS A& GaeadasSyl GA G, afd/saitisliKety tobbepardddastrare§y. LINB RA O

Graphsarerelatvetp & I n KX drBeininber & fligh yivdlded in the analysis is reported

next to each barThe horizontal axes have different scales in the taeasons sinc¢he relative
improvement in summer has highest valu&siropean airlines show a clear behaviour: Air Europa,
Alitalia and Air Nostrum (legacy) and Vueling, Ryanair and Iberia Express (low cost) have significantly
higher values than the others, in both the seasofiso,the companies with the smallest values are
consistent in the two seasons. The aforementioned airlines show the same behaviour also when we
compare them with other airlines traveling on the same rou@srepresented ifrigurell:

Routes and airlines - SPRING

500

)
4
8
8

factor(airline)
| AirEuropa
B 4ir Nostrum

B 1oeria sirines
Bl oeria Express
B Luthansa

[
S

[N)
S
=]

I Norwegian Ai nternational
Ryanair

Average relative improvement (%
@

o
=)

‘ Vueling Airlines

0 | -

LEMD-LEPA LEMD-EDDF LEMD-LIRF
Route

Figurell: Comparison between airlines flying the same route in the spring period analysed.

By means of the previously described predictinedel, it is possible to estimate the probability of

change of every flight (given that the flight is a regular and frequent one).

The following graptfFigure12: Average probability of change of Lufthansajiofi I n K T2 NJ RA ¥
routes during the diurnal shiftsrelative to thediurnal shiftandit isreferred ton (i ICallsidbs with
averageprobability of changdess than 0.0&re notshown
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The percentage of airline’s callsigns
which have on average O probability of

Lufthansa change (i.e., are never predicted to
pLH3sme{ | H / change in the data con;idered] and are
3 i [ —— therefore not reported in the graph
DLH1821 | < 0-mean callsigns: 63% D—
ouHtamy - I C%ELF*\;— The average confidence
ptHiau{ M <[ _avg change prob: 0.1 >— of the predictions
DLH3sn| [ factor{Route) performed on the airline
puHozu{ B eooFess
DHe1s1 B eooreer The average probability
owH11531 [ M eooueno of change for the
£, DLHS5A ] = E::::;;‘; airline’s callsigns
2 ouvar I — — -
o pihzsHy (NN | [
DLHOSE _ B evoeoor
owvesc{ (NN B cewo-eoom
DiHzeH{ I I epneoor
oHi1{ B eracoou “Notice that the “default”
prHetH| I predictions (ie., when the
phzse| model doesn’t find any
DLHB8W _ matching examplein the past)
ouHgsn{ I are excluded from the
computation of these numbers
0.00 0.25 050 0.75 1.00

Average probability of change

Figurel2: Average probability of change of Lufthansaffoli ' n K F2NJ RATFFSNBYy i NRdziSa

Furthermore, he probability of change is not independent bktroute; inFigurel3 and Figurel4, it
is clear that the same airlines can behaveyinte differentways on different routeswhile on the
same route, different airlines tend to behave in similar ways.

LEMD-LEBL
Vueln frines _ : avg conidente 0 63

| avg confidence: 0.61
] avg change prob: 0.43

g

= Air Europa

o

e firines _

0.00 025 050 075 1.00
Average probability of change

Figurel3: Average probability of change in the route LEMEBL for the airlines: Vueling, Air Europa and Iberia.

LEPA-LEBL
Air Europa l . 0-mean callsign: 0%
| avg confidence: 0.64
! avg change prob: 0.08
2
£ Vueling Airlines
]
Ryanair .
0.00 025 0.50 0.75 1.00

Average probability of change
Figurel4: Average probability of change in the route LEEBL for the airlines: Vueling, Air Europa and &gan

Another observation thatdeeper analysesuggest is that flights departing from some airports
(especiallythe biggest ones) seem to have higher probability of change, e.g. LEMD.

2.33 Predictive modelLowresolution scenarianalysis

This scenariaireferred to ECAC area, trying to apply similar analysis. Is to be noted tlmatribgean

wide data source (DD&Demand Data Repositgris a determinant factor in what can be applied. The
project has tried to illustrate the result all applyingianilar approach to this scenario, for reference.

In order to render the lowesolution analysis comparable with the higgsolution one, we needed to
find the correspondent definition of waypoints; to do so, we compared the trajectory description of
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DDR \ith the one in the data from the first scenario, whenever the same flights are involved (i.e.,
flights whose entire trajectory pertains ®panishairspace).

Here isan example from the 1st of June 2018, a flight from Madrid to Valencia:

- highres (spatigl trajectory description:
MD14L, MD050; MDO035; NANDO; MINGU; ABOSI; CLS; OPERR,

- low-res trajectory description:
20180601142400EMDBNANDO1U:20:0:A:402820N0033339W::Y
20180601142415::DCT:25:1:V:402759N0033304W:14:Y
20180601142443::DCT:35:4:V:402657N0033121W:57:Y
20180601142513MD50:NANDO1U:48:7:D:402554N0032937W: .Y
20180601142517::DCT:50:8:V:402538N0032900W:6:Y
20180601142600::DCT:70:13:V:402415N0032558W:38:Y
2018060182645::DCT:90:19:V:402237N0032219W:75:Y
20180601142709MD35:NANDO1U:100:23:D:402131N0031953W::Y
20180601142820::DCT:130:35:V:401902N0031206W:11:Y
X®

This kind of behaviour imther systematic, so to apply the model to the new scenario we used as
wayponts the information in the second field of the variabléhe lowresolution model was built by
mimicking the higkresolution one, with the necessary adaptations. In fact, since in this scenario we
only have one flight plan per day, the predicted traject@the most probable one given the flight
plan of the day before

The model, as in the higlesolution case, has two main functionalities: predict if the trajectory will
changeandpredict the final trajectory (and its probabilitylhe following resu#t are relative to about
8000 flights (i.e., the ones flying every day) in June 2018.

The modelwastested on the last week of the month; for each test day, all the preceding ones are
used as training set. This assessment methodology is slightly diffecentthe one adopted in the
high-res scenario since in this case the order of days is absolutely not negligible.

For each flight, the predictive accuracy of the model was compufde: performance on low
resolution scenario isquite predictably- lower than the highresolution one. The main reason for this
is the probability of change:
1 Inthe highres scenario, we compared the ldstfore-eobt trajectory with the flighplan
recorded 2h/4h/8h before, and in the vast majority of cases the input traject@y already
reliable, with a probability of change on average around 20%;
 InthislowNBa &AO0SYINA2X ¢S O2YLI NB G2RItheQa (NI 2SO
probability of change is on average 55%

Furthermore, this change rate (and therefore also the accuracy of the model) is distributed in quite an

uneven fashionFigurel5a K2 g a (G KS RA & (i NangedaieAfrany whzliRerelarke dliugey Sa Q O
amount of extreme values.
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For this reasonthe median accuracys consideredinstead of the average one, since is more robust
to extreme values:

1 Median acaracy per flighof the model 67%

1 Median accuracy per flightithout the model 33%

As in the higkresolution case, we can retrieve some interesting information on airlines by looking at

the distribution of theaverage relative improvement per airlin€lhe median value is around 500%

(e.g., if the probability oforrectly predictingi 2 Y2 NNB ¢ Q& GNI} 2SOG2NASa FT2NI Iy
trajectories is 15%, on median thanks to the model it will be 7B3d.in this case, values are actually
veryspread,and a central value cannot be representative.

Figurel6 showsthe average relative improvement of some airlings generalall the valuesrange
between 0 and. Notice the xaxis is not expressed in percentage (€3@s,300%).

Figurel6: Average relative improvement of some airlines
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