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1 Abstract and executive summary 
1.1 Abstract 

The Meteo Sensors in the Sky (METSIS) project explores the use of drones as a wind sensor network 
for U-space applications. The novel concept aims to provide accurate and low-cost wind nowcasts for 
drones using data collected by drones themselves, i.e., ‘wind nowcasts for drones by drones’. A proof-
of-concept flight-test experiment was performed using four drones to determine the feasibility of the 
METSIS concept at low altitudes. In the current incarnation, ultrasonic anemometers were mounted 
to each drone to measure local winds. The flight-tests evaluated the effect of obstacle-induced wind 
distortion, drone motion, measurement density, and measurement errors. Additionally, wind fields 
estimated during the flight-tests were published in real-time to the AirHub Drone Operations Center 
– a functional U-space Service Provider – to demonstrate the communication of these data to real 
end-users. The results indicate that the METSIS concept is a promising solution for wind nowcast 
component of the U-space weather information service. Future research should investigate the 
accuracy of the concept for a wider range of scenarios than considered here, and develop the 
technologies needed to increase the scalability of the concept. 

1.2 Executive summary 

1.2.1 Background 

Because of their light-weight nature, drones can be vulnerable to wind. This is particularly the case at 
low altitudes where both wind speed and direction can change abruptly. However, at present, real-
time and accurate knowledge of low altitude wind information is limited, especially in urban areas. 
This limitation makes it difficult to realize the numerous anticipated applications of drones in urban 
areas, such as aerial photography, mapping and package delivery. The U-space weather information 
service aims to address this issue by making the required weather, including wind data, available to 
drone operators (Corus, 2019). 

1.2.2 The METSIS concept and its benefits 

The Meteo Sensors In the Sky (METSIS) project proposes to test the use of drones as a wind sensor 
network for hyper-local wind now-casting in very low level airspaces (<500 ft). The METSIS concept 
consists of three steps; see Figure below. This project has investigated all three steps of the concept. 

 
Step 1: Airborne drones measure 
instantaneous wind states and transmit 
data to a ground station 

 
Step 2: Ground station uses the Meteo 
Particle Model (MPM) to estimate the 
wind field in real time. Here dashed arrows 
are MPM estimates and solid arrows are 
drone measurements.  

 
Step 3: The ground station 
communicates wind field data to 
drone operators via the U-space 
weather information service 
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The METSIS concept offers several technical and practical advantages. For drone operators, the 
METSIS approach has the potential to not only improve safety, but also improve flight efficiency as 
wind can significantly affect drone battery life and/or range. Additionally, in comparison to other 
approaches that make use of a dedicated measurement infrastructure such as LIDARs, the METSIS 
concept represents a relatively low-cost solution as the drones themselves provide the required wind 
measurements. This further strengthens the potential commercialization of the METSIS concept. 
Beyond drones, this approach for low-altitude wind measurement can also be applied to other areas 
of the aerospace industry, for instance for Shipboard Helicopter Operational Limitation (SHOL) 
analysis. Finally, METSIS has broader societal applications, e.g. safety of construction cranes, and as 
an additional input to national meteorological forecast systems. 

1.2.3 Technical Contributions 

This project resulted in the following main technical contributions: 

• Wind tunnel testing of wind sensor: the accuracy of the ultrasonic wind sensor used in this 
project was analyzed in the NLR Anechoic Wind Tunnel. 

• Meteo Particle Model extension: The MPM, which is used to estimate wind fields using 
drone observations, was extended to 3-dimensions. 

• Development of the METSIS ground station: the ground station aggregates the data from all 
the drones (and wind sensors), logs the data, and uses the MPM to estimate wind fields. 

• Real-time communication of wind data to a U-space Service Provider (USSP): The ground 
station also transmitted the MPM wind estimates in real-time to the AirHub Drone 
Operations Center. 

• Drone-sensor configuration: four quadcopter drones were modified to mount the wind 
sensors onto the drones. This included modifications to the drone power supply and 
telemetry systems. 

• Proof-of-concept flight-test experiment: A full day flight-test experiment using four drones 
was performed to study effects of obstacle-induced wind distortion, drone motion, 
measurement density, and measurement errors on the accuracy of the METSIS wind 
nowcasting system. 

1.2.4 Conclusions 

Based on the data collected during the flight-tests, the following main conclusions can be drawn: 

• The flight-tests indicated that the METSIS concept is feasible in practice, i.e., that it is indeed 
possible to use drones as a weather sensor network for hyperlocal, low-altitude and real-
time wind field estimations for U-space applications. 

• When comparing the results of the experiment to the World Meteorology Organization 
(WMO) requirements for anemometers, the Meteo-Particle Model (MPM) showed 
satisfactory performance, especially during high wind speed scenarios. Therefore the MPM, 
which was originally developed for high altitude wind estimations for commercial aircraft, is 
considered suitable for low-altitude drone operations after the minor modifications made in 
this project. 

• Answers to the main research questions of the METSIS project: 
o Effect of obstacles: static obstacles had a minor effect on overall accuracy at the 

distances at which drones are expected to operate from obstacles. 
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o Effect of drone motion: given the low wind speeds during the experiment day, 
propeller induced flow had a strong negative effect on the measurements taken by 
the ultrasonic wind sensor during dynamic/motion scenarios. As such this research 
question remains inconclusive. This topic should be reconsidered in follow up 
research. 

o Effect of number of drones/measurement density: for the wind conditions observed 
during the experiment, the results indicate that a minimum of two drones are 
needed for the MPM to model changes in wind direction. 

o Effect of measurement error: no significant change in accuracy occurred when two 
different Gaussian noise models (with a standard deviation of 10% and 25% of the 
average wind speed during the experiment) were artificially added to measured 
data. 

o Communication of hyperlocal wind data to U-space Service Providers (USSPs): wind 
information can be transmitted in JSON format using HTTP POST. This proved to be a 
reliable means to communicate wind data to USSPs in real-time. 

1.2.5 Recommendations for future research 

Because of the promising results obtained from the flight-tests, it is highly recommended to continue 
this line of research as the implementation of the METSIS concept on a larger scale could result in a 
viable and low-cost system for hyperlocal wind nowcasts for the U-space weather information service. 
To this end, the following main recommendations are made to further develop this concept towards 
practical implementation: 

• Repeat the experiment over multiple experiment days and consider more experiment 
scenarios to gain a more thorough understanding of system accuracy. 

• Investigate methods to reduce the effect of propeller induced flow over the wind sensor 
during dynamic scenarios. 

• Increase the scalability of the method by using indirect wind measurement techniques that 
do not require a dedicated wind sensor for each drone. If the wind sensor can be removed 
from the METSIS concept, the previous bullet point does not need to be considered for 
future research. 

• Perform online optimization of MPM parameters to further increase accuracy. 
• Future implementations should transmit wind data to USSPs in the GEOJSON data format 

(more widely used for weather data) via web-sockets (more scalable than HTTP Post). 
• Demonstrate practical applications of hyperlocal weather information, including methods 

that drone operators can use to compute wind optimized routes to increase drone 
range/battery life. 

• Explore the viability of the METSIS concept to other weather parameters such as 
temperature and air pressure. 
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2 Overview of catalyst project 
2.1 Operational/technical context 

2.1.1 Background 

Over the past decade, drones have enjoyed tremendous media attention. The growing excitement for 
these new aircraft types have led many to envision a future in which large numbers of drones fly over 
urban areas for numerous applications ranging from aerial photography to package delivery. But 
before this vision for the future can become a reality, several challenges need to be tackled. One of 
these challenges is safe airspace integration for drones. To this end, the European Commission and 
SESAR have initiated the U-space program to develop the services needed to cope with the anticipated 
future high demand for drone flights (SESAR 2018); see Figure 1. 

 
Figure 1: U-space program development phases (courtesy SESAR Joint Undertaking). 

This project considers solutions for the “Weather Information” service of U-space U2 (initial services), 
which is intended to provide drone operators with information about the actual and forecasted 
weather situation (SESAR 2018, CORUS 2019). More specifically, this project focuses on a novel 
approach to estimate and communicate hyper-local real-time wind information to drones using data 
measured by drones themselves, i.e., by using drones as a wind sensor network. This approach has 
the potential to increase the safety of drone operations, particularly at low altitudes where wind speed 
and direction can vary abruptly. As such, this project focuses on Engage Knowledge Transfer Network 
(KTN) thematic challenge 3 in the context of drone integration: 

 

2.1.2 The METSIS concept 

The METSIS methodology consists of three main steps; see Figure 2. 

Thematic Challenge 3: Efficient provision and use of meteorological information in ATM 
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Step 1: Airborne drones measure 
instantaneous wind states and transmit 
data to a ground station 

 
Step 2: Ground station uses the Meteo 
Particle Model (MPM) to estimate the 
wind field in real time. Here dashed 
arrows are MPM estimates and solid 
arrows are drone measurements.  

 
Step 3: The ground station 
communicates wind field data to drone 
operators via the U-space weather 
information service 

Figure 2: The three steps of the METSIS concept 

In the first step, instantaneous wind speed and direction measurements are downlinked to the ground 
by airborne drones. Subsequently, a ground station aggregates the wind data from the individual 
drones, and uses the Meteo Particle Model (MPM) to estimate a 3D wind field vector map over the 
sensed area in real time containing both wind speed and direction (see Section 2.3.1 for more info on 
MPM) (Sun et al., 2018). This 3D wind field is continuously updated with new measurement data 
transmitted by the individual drones to ensure that any wind variations are captured. In the third and 
final step, the 3D wind field information in communicated to drone operators via the U-space weather 
information service. This wind information can be used by drone operators for determining unsafe 
wind areas, as well as for flight planning (before take-off) and re-planning (during flight) purposes. 

The METSIS concept offers several technical and practical advantages. For drone operators, the 
METSIS approach has the potential to not only improve safety, but also improve flight efficiency as 
wind can significantly affect drone battery life and/or range. Additionally, in comparison to other 
approaches that make use of a dedicated measurement infrastructure, the METSIS concept represents 
a relatively low-cost solution as the drones themselves provide the required wind measurements. This 
further strengthens the potential commercialization of the METSIS concept. Beyond drones, this 
approach for low-altitude wind measurement can also be applied to other areas of the aerospace 
industry, for instance for Shipboard Helicopter Operational Limitation (SHOL) analysis, and for 
offshore construction activities (e.g. wind turbines). Finally, METSIS has broader societal applications, 
e.g. safety of construction, safety of road/marine traffic, and as an additional input to national 
meteorological forecast systems. 

2.2 Project scope and objectives 

2.2.1 Objectives and research questions 

Although the METIS concept is composed of tried-and-tested ingredients, it is unclear if the accuracy 
of the overall method is suitable for U-space applications, particularly in the presence of static 
obstacles and at low altitudes. Therefore, the main objectives of this project are to: 
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To meet the above research objectives, NLR and AirHub B.V. performed a proof-of-concept drone 
flight test experiment. The experiment will aim to answer the following five research questions: 

 

2.2.2 Research Approach and Scope 

As mentioned above, a proof-of-concept experiment was performed to validate the effectiveness of 
the METSIS concept. The experiment was performed at the NLR Drone Center in Marknesse, the 
Netherlands; see Figure 3. This unique facility has its own dedicated airspace (up to 3500 ft), and has 
all the permissions and equipment required to perform experimental drone test flights. 

 
a) Runway 

 
b) Dedicated airspace (EHR 66) 

Figure 3: The NLR Drone Center in Marknesse, the Netherlands will be used as the test site for the METSIS experiment 

To restrict the focus of the experiment towards answering the five research questions listed in Section 
2.2.1, the following design choices/simplifications are proposed: 

• Only quadcopter type drones were used; 
• 2 Obstacles obstacle types were considered during the experiment, namely a mobile trailer 

and a line of trees1; 

 
1 Originally, the drone center building was also planned as an obstacle. However, time constraints caused by rain 
on the experiment day meant that that the scenarios next to the drone center building could not be performed. 

Research Objectives 

1. Determine the accuracy of the METSIS concept in the presence of static obstacles to estimate 
low altitude winds below 1000 ft; 

2. Determine how low-altitude wind information should be communicated to drone operators 
within a U-space system  

Research Questions 

1. What level of accuracy can be achieved with the Meteo-Particle Model at low altitudes with and 
without static obstacles? 

2. How is accuracy affected by the motion of the drone? 
3. How does the number of drones affect the accuracy of the wind field? 
4. How resilient is the Meteo-Particle Model to wind measurement errors by some of the drones 

in the sensor network? 
5. How can the data be communicated in real-time to done operators via U-space system? 
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• Only one U-space operations system, namely the AirHub Drone Operations Center, will be 
considered in this project. Nonetheless, it will be possible interface the researched methods 
with other U-space operations systems on the market. 

• Drones measured local wind speed and direction using onboard ultrasonic wind sensors. 

The last bullet point above indicates that onboard ultrasonic sensors are used to measure 
instantaneous wind speed and direction in this project. This decision was made to simplify the design 
of the proof-of-concept experiment considered in this work. The use of such ultrasonic sensors adds 
cost to the current implementation of the METSIS concept. But in the future, it may be possible to 
avoid the use of these sensors by inferring wind speed and direction as the difference between ground 
speed and airspeed using an appropriate filtering method. This aspect is considered in the 
recommendations section of this report; see Section 3.1. 

2.3 Research carried out 

2.3.1 Meteo Particle Model (MPM) and its extension to 3D 

2.3.1.1 MPM 

METSIS will test the use of drones as a wind sensor network for hyper-local wind field nowcasting at 
low altitudes (<500 ft). For this task, METSIS aims to utilize the Meteo-Particle Model (MPM), a 
technique for wind field estimation based on aircraft ADS-B and Mode S data and available as a Python 
library. Together with a research paper, this tool was developed by Junzi Sun and his colleagues at the 
TU Delft Communication, Navigation & Surveillance in Air Traffic Management (CNS/ATM) research 
group (2018). Refer to Figure 4 for an example visualization of the wind measurement, particle 
creation, and wind field estimation of the MPM on an XY-plane of 100 × 100 kilometers. 

 
Figure 4: Wind field estimation process (measurement, particle creation, wind field estimation) of the  

Meteo-Particle Model (Sun, Vû, Ellerbroek, & Hoekstra, 2018) 

The fundamental idea of the Meteo-Particle Model is to use a random walk process to extend weather 
information (modelled as particles) from aircraft flight paths to areas with little or no aircraft 
observations. The MPM is able to extend the weather information on a predefined grid area (X×Y×Z). 
It is a Monte Carlo type simulation, meaning it is a model used to predict the probability of different 
outcomes when the involvement of random variables is present (Kroese et al., 2014). 

In MPM, particles can be considered as the information medium, propagating the wind (and 
temperature) measurements to surrounding areas. Over time, the particles decay according to particle 
age due to the probabilistic re-sampling technique. Figure 5 represents the general steps and 
components of the MPM, which are explained in the following subchapters. 
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Figure 5: General steps of the MPM (courtesy of Sun, Vû, Ellerbroek, & Hoekstra, 2018) 

Parameter gathering 

The most important parameters that will have to be gathered are aircraft position (x, y, z), wind 
measurement vectors for west-east component u and a north-south component v. The temperature 
is denoted as scalar 𝜏𝜏. The measurement array given a specific time interval is given as [𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑢𝑢, 𝑣𝑣, 𝜏𝜏]. 

Probabilistic rejection 

A probabilistic rejection mechanism is used in order to prevent sudden variations in instantaneous 
wind fields due to incorrect data and random measurement errors (refer to Section 3.4). For each new 
measurement, there is a chance that the sample will be accepted with a probability of p. The mean 
and variance of wind and temperature states of accepted measurements from a similar altitude are 
computed, which are presented as (𝜇𝜇𝑢𝑢,  𝜎𝜎𝑢𝑢2), (𝜇𝜇𝑣𝑣 ,  𝜎𝜎𝑣𝑣2) and (𝜇𝜇𝜏𝜏,  𝜎𝜎𝜏𝜏2) for the u and v component of the 
wind and the temperature respectively. Then, the probability function is expressed as: 

𝑝𝑝 = 𝑒𝑒𝑥𝑥𝑝𝑝 �− 1
2

(�̅�𝑥 − �̅�𝜇)𝑇𝑇�𝑘𝑘1Σ��
−1(�̅�𝑥 − �̅�𝜇)�, with: 

�̅�𝜇 = (𝜇𝜇𝑢𝑢, 𝜇𝜇𝑣𝑣 , 𝜇𝜇𝜏𝜏) 

Σ� = �
𝜎𝜎𝑢𝑢2 0 0
0 𝜎𝜎𝑣𝑣2 0
0 0 𝜎𝜎𝜏𝜏2

� 

(1) 

where 𝑘𝑘1 is being used as a control parameter to increase or decrease the acceptance tolerance of 
the probabilistic rejection mechanism. A low 𝑘𝑘1 will lower the measurement acceptance. 

Meteo-Particle generation 

A particle, not to be confused with a physics particle, is generated when new wind measurements are 
observed. A particle is an information medium and consists of the position (𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝, 𝑧𝑧𝑝𝑝), origin 
(𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0), horizontal wind components (𝑢𝑢𝑝𝑝, 𝑣𝑣𝑝𝑝), temperature 𝜏𝜏𝑝𝑝 and age 𝛼𝛼. N particles are created 
for each new measurement at an aircraft location. The position and wind states are measured on 
aircraft, hence measurement noise 𝒩𝒩 is added to position and wind states in order to account for 
uncertainty of measurement data: 

               �
𝑢𝑢𝑝𝑝,𝑖𝑖
𝑣𝑣𝑝𝑝,𝑖𝑖
𝜏𝜏𝑝𝑝,𝑖𝑖

�  ~  𝒩𝒩��
𝑢𝑢
𝑣𝑣
𝜏𝜏
� , �

𝜎𝜎𝑢𝑢02 0 0
0 𝜎𝜎𝑣𝑣02 0
0 0 𝜎𝜎𝜏𝜏02

�� 𝑖𝑖 = 1, 2,⋯ ,𝑁𝑁 (2) 
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Propagation model 

With each iteration step, all particles will propagate according to a random walk model. Via each step 
of the random walk model, the particle position gets updated and particle age increases. The motion 
model of a particle is described with: 

                                          �
𝑥𝑥𝑝𝑝,𝑖𝑖.𝑡𝑡+1
𝑦𝑦𝑝𝑝,𝑖𝑖,𝑡𝑡+1
𝑧𝑧𝑝𝑝,𝑖𝑖,𝑡𝑡+1

� = �
𝑥𝑥𝑝𝑝,𝑖𝑖,𝑡𝑡
𝑦𝑦𝑝𝑝,𝑖𝑖,𝑡𝑡
𝑧𝑧𝑝𝑝,𝑖𝑖,𝑡𝑡

� + ∆𝑃𝑃𝑡𝑡  

               ∆𝑃𝑃𝑡𝑡   ~  𝒩𝒩��
𝑘𝑘2𝑢𝑢𝑝𝑝
𝑘𝑘2𝑣𝑣𝑝𝑝

0
� , �

𝜎𝜎𝑝𝑝𝑝𝑝2 0 0
0 𝜎𝜎𝑝𝑝𝑝𝑝2 0
0 0 𝜎𝜎𝑝𝑝𝑝𝑝2

�� 

𝑖𝑖 = 1, 2,⋯ ,𝑁𝑁 (3) 

where ∆𝑃𝑃𝑡𝑡  is the step factor and 𝑘𝑘2 a control parameter to become more biased towards the wind 
direction when 𝑘𝑘2 increases. 

Probabilistic re-sampling 

Re-sampling maintains the number of particles in the system according to age. First, all particles that 
propagated outside of the boundaries will be removed. Afterwards, all particles are sampled by age 𝛼𝛼 
according to the following probability function: 

𝑝𝑝(𝛼𝛼) = 𝑒𝑒𝑥𝑥𝑝𝑝 �−
𝛼𝛼2

2𝜎𝜎𝛼𝛼2
� (4) 

where 𝜎𝜎𝛼𝛼  is the age control parameter. The older a particle becomes, the more likely it is that it will 
be removed. 

Construction model 

The construction model is based on the principle that at any location (𝑥𝑥,𝑦𝑦, 𝑧𝑧) within the boundary 
area, the wind and temperature information can be reconstructed by the surrounding particles. The 
wind at any given position can be computed as the weighted sum of the wind state information carried 
by the particles. The neighbouring particles are denoted as P, and the wind state of particle p with 
location (𝑥𝑥,𝑦𝑦, 𝑧𝑧) can then be computed as: 

�𝑢𝑢𝑣𝑣� =
1

∑ 𝑊𝑊𝑝𝑝𝑝𝑝∈𝑃𝑃
∙ � �𝑊𝑊𝑝𝑝 ∙ �

𝑢𝑢𝑝𝑝
𝑣𝑣𝑝𝑝��

𝑝𝑝∈𝑃𝑃

 (5) 

𝑊𝑊𝑝𝑝 is the weight of each particle based on the product of the two exponential functions 𝑓𝑓𝑑𝑑(𝑑𝑑) and 
𝑓𝑓0(𝑑𝑑0), wherein 𝑓𝑓𝑑𝑑 defines an exponential relationship between the weight and distance between the 
particle and the calculation coordinate, and 𝑓𝑓0 defines an exponential relationship between the weight 
and distance of the particles from their origin: 

𝑓𝑓𝑑𝑑(𝑑𝑑) = exp �−
𝑑𝑑2

2𝐶𝐶𝑑𝑑2
� (6) 
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𝑓𝑓0(𝑑𝑑0) = exp �−
𝑑𝑑02

2𝐶𝐶02
� (7) 

𝑊𝑊𝑝𝑝 = 𝑓𝑓𝑑𝑑(𝑑𝑑) ∙ 𝑓𝑓0(𝑑𝑑0) (8) 

where 𝐶𝐶 is the control parameter that can increase or decrease the importance of 𝑓𝑓𝑑𝑑 and 𝑓𝑓0. 

Confidence model 

To obtain a measure of trustworthiness of the estimated wind, a confidence level model is used. The 
model outputs a value between zero and one, where full confidence in the estimated wind is defined 
by a confidence level of one. 

The confidence level of wind and temperature estimates is computed as the combination of four 
functions: 

1. Number of nearby particles (N) 

2. Mean distance between particle and location of interest (D) 

3. Homogeneity of wind states carried by particles (H) 

4. Strength of the particles due to ageing (S) 

Higher confidence levels are assigned to locations where more particles N are in the vicinity D. The 
homogeneity refers to the similarity of particle states and is denoted as the covariance – the measure 
of the directional relationship between two random variables (Dowdy, Wearden, & Chilko, 2004) – of 
the wind vector components of the particles: 

𝐻𝐻𝑤𝑤 = �𝐶𝐶𝐶𝐶𝑣𝑣�𝑢𝑢𝑝𝑝���,𝑣𝑣𝑝𝑝����� (9) 

The strength parameter can be calculated as the fraction of the average particle ages: 

𝑆𝑆 =
1
𝛼𝛼�𝑝𝑝

 (10) 

To create a combined confidence level, the values from all four confidence functions will have to be 
normalised into the {0,1} range using the following scaling function: 

𝑠𝑠(𝑥𝑥) =
𝑥𝑥 − min (𝑋𝑋)

max(𝑋𝑋) − min (𝑋𝑋)
 (11) 

Finally, the final output of the confidence level model is obtained as the mean of the normalised 
confidence levels: 

𝐶𝐶𝑤𝑤 = 𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚{𝑠𝑠(𝑁𝑁), 𝑠𝑠(𝐷𝐷), 𝑠𝑠(𝐻𝐻𝑤𝑤), 𝑠𝑠(𝑆𝑆)} (12) 
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MPM control parameters 

The following table provides an overview of the most important MPM control parameters for this 
project. 

Table 1: MPM control parameters that are of relevance to the METSIS project 

Parameters Units Description 

X-boundary [m] Width of the construction grid. 

Y-boundary [m] Length of the construction grid. 

Z-boundary [m] Height of the construction grid. 

XY neighbourhood [m] 
The neighbourhood of a point is a set of points containing that 
point where it can move some amount in any direction 
without leaving the set. 

Z neighbourhood [m] Neighbourhood in the vertical direction. 

Minimal particle density [1/𝑚𝑚3] Minimum particle density to compute per cubic metre. 

Ageing parameter [s] Particle ageing parameter can be used to increase or decrease 
the ability to track rapid local changes. 

Distance weighting 
parameter [m] 

Increasing this parameter will increase the weight 𝑊𝑊𝑝𝑝 of the 
particle in the construction model. Particles closer to their 
origin will contribute more to the estimation of wind at the 
location of interest. 

XY particle random walk [m] Travel distance of the particle random walk on the XY plane. 

Z particle random walk [m] Travel distance of the particle random walk in the vertical 
direction. 

Particle wind variation [m] Increasing this parameter will increase the wind variation 
noise during particle initialisation. 

Acceptance probability 
factor - Increase or decrease the measurement acceptance. 

XY particle random walk 
factor - 

Control parameter to become more biased towards the wind 
direction when on the XY plane during the particle random 
walk motion model. 

Z particle random walk factor - 
Control parameter to become more biased towards the 
vertical wind direction during the particle random walk motion 
model. 

2.3.1.2 Extension of MPM to 3D 

In order for the MPM to consider the vertical component of wind to properly model the turbulent flow 
in urban environments, a few modifications have been made to the MPM in this project. The 
probabilistic rejection principle (Eq. 1) is unchanged. However, the variance matrix is modified to 
include the vertical wind component 𝑤𝑤 instead of the temperature component 𝜏𝜏 (this study is not 
interested in temperature measurements). Particle generation (Eq. 2) has been altered in similarly. 
For the propagation model (Eq. 3), an additional control parameter 𝑘𝑘3 is introduced to control the 
vertical wind direction bias. The information reconstruction of Eq. 5 is extended with 𝑤𝑤 without 
additional alterations, similar to the determination of the confidence level (Eq. 9). 
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2.3.1.3 Particle-ground interaction 

As the original MPM was intended to be used in combination with ADS-B aircraft wind information, 
the effect of the ground was not taken into account. However, since this experiment will take place to 
altitudes up and until 100 meters. The effect of the ground has to be included. Without this alteration 
the model would just discard any particles that would traverse out of bounds. However as one of the 
boundaries in this experiment is the ground, this becomes an issue as wind interacts with the ground 
and the boundary layer effect becomes important since the wind speed at the ground reduces to near 
zero. Therefore, an alteration has been made to the way the model deals with particles hitting the 
ground. This is done by resetting a particle if it drops below ground level (z coordinate becomes 
negative) to the ground level. Thus, the z coordinate of the particle is set to 0 if it becomes negative. 
Another option was discussed to let the particle bounce off the ground after it hit the ground, however 
this would then change the properties of the particle and thus the model, causing it to behave more 
like a flow simulation instead of a Monte Carlo simulation. Therefore, this alternate option was 
deemed inappropriate as the particle approach used by MPM should not make any assumptions about 
the flow behavior. 

2.3.2 Wind tunnel experiment design 

The horizontal and vertical accuracy and precision of the ultrasonic wind sensor are examined during 
tests in the NLR anechoic wind tunnel while being subjected to different wind tunnel speeds and pitch 
angles. The resulting test data is analyzed in order to account for discrepancies during the post-
experiment analysis. Discrepancies in the experiment data analysis may or may not be a result of the 
findings in this chapter. Figure 12 presents how the sensor-drone combination was mounted in the 
wind tunnel. The following independent variables were considered during the wind tunnel test: 

• Three wind tunnel speeds:  6, 9 and 12 m/s 

• Two drone propeller powers: 0% and 50% 

• Nine angles of attack (𝛼𝛼):  {−2𝑜𝑜 , … , 18𝑜𝑜}, 𝑠𝑠𝑠𝑠𝑒𝑒𝑝𝑝𝑠𝑠 𝐶𝐶𝑓𝑓 2.5 

 

 

Figure 6: Wind tunnel testing of the Annemoment Trisonica Mini ultrasonic wind sensor 

Following the execution of the wind tunnel test and importing the acquired data in Python, the 
horizontal wind speed magnitude 𝑤𝑤xy is calculated using the Pythagorean Theorem of the 𝑤𝑤𝑝𝑝 and 𝑤𝑤𝑝𝑝 
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wind components. The airflow in the anechoic wind tunnel is purely horizontal; the true measured 
horizontal 𝑤𝑤𝑢𝑢𝑣𝑣 and vertical wind speeds 𝑤𝑤𝑤𝑤 will be calculated by taking into account the angle angle 
using trigonometry:  

𝑤𝑤𝑢𝑢𝑣𝑣 = 𝑤𝑤𝑝𝑝𝑝𝑝 ⋅ c𝐶𝐶𝑠𝑠(α) + 𝑤𝑤𝑝𝑝 ⋅ 𝑠𝑠𝑖𝑖𝑚𝑚(α) (13) 

𝑤𝑤𝑤𝑤 = 𝑤𝑤𝑝𝑝𝑝𝑝 ⋅ sin(α) + 𝑤𝑤𝑝𝑝 ⋅ 𝑐𝑐𝐶𝐶𝑠𝑠(α) (14) 

2.3.3 Flight-test experiment design 

The following paragraphs describe in detail the design of the flight-test experiment performed at the 
NLR Drone Center. The experiment was designed to answer the main research questions of this 
project. It should be noted that two days were originally planned for the experiment. However, signal 
interference issues on the first day which meant that it was not possible to guarantee safe control of 
the four drones at the same time. Therefore, the first day had to be cancelled. Due to team-member 
and facility availability during the time frame of the project, the experiment was scaled down to fit 
into one full day. The following paragraphs discuss the details of the experiment as executed. 

2.3.3.1 Independent and dependent variables 

The scenarios are kept as simple as possible and designed in such a manner that the scenarios can be 
equitably compared to establish a reliable proof of concept of METSIS. There has to be sufficient 
commonality in the design of scenarios to ensure the scenario comparisons will be made objectively. 
The scenarios are divided over four independent variables, which will be used to objectively measure 
the accuracy of the four dependent variables; see Table 2. 

Table 2: Experiment independent and dependent variables 

 

 

 

 

 

2.3.3.2 Drone Topology 

The experiment employs a predefined topology instead of free flight paths for drones. This is because 
predefined topologies can be pre-programmed into the drone autopilot software, which allows for 
autonomously flying drones and less room for human error. An equilateral triangle was selected as 
the drone topology in this project; see Figure 7. 

Independent variables Dependent variables 

Obstacles  Measured horizontal wind speed 

Motion of drones Measured vertical wind speed 

Distances between drones Measured horizontal wind direction 

Altitudes Measured vertical wind direction 



   

Engage catalyst fund project final technical report 18 

 

Figure 7: Drone measurement topology during the METSIS experiment 

Due to the maximum availability of four drones and four sensors, three measurement drones will be 
used in conjunction with one reference drone - this also explains the use of an equilateral triangle as 
the drone topology. The measurement drones measure 3D (horizontal and vertical) wind speed and 
direction at the corner of the triangle, which will be fed into the MPM to construct the wind field 
estimations. The reference drone will measure at four different accuracy locations to determine the 
true wind speed and direction at specific locations. The reference drone is always static at each 
accuracy location to avoid random measurement errors. 

In dynamic scenarios, measurement drones fly clockwise from corner to corner of the equilateral 
triangle resulting in a circular flight path for a constant flight speed. An altitude offset of 1 metre 
between measurement drones will improve safety during runs with moving drones. 

2.3.3.3 Obstacles and drone motion 

The scenarios are designed using a combination of static and dynamic drone motions and two different 
obstacle types (a small trailer and a tree line). Initially, the NLR Drone Centre building was considered 
as well. However, due to time limitations caused by rain on the experiment day, it was not possible to 
perform the corresponding scenarios. Comparing obstacle scenarios with the baseline scenario will 
determine how the model’s accuracy is affected in the vicinity of obstacles. The hypothesis on the 
usage of obstacles is as follows: 

• Obstacles as buildings and trees can decrease wind speeds significantly, and they often create 

wind distortion in their neighbourhood. Obstacles, in general, are expected to distort the wind 

field and reflect wind. Distortion means deformation/turbulence in wind flow (speed and 

direction) induced by an obstacle (Van Bussel, 2008). 

The objective is to determine how much the accuracy of the METSIS concept is affected near obstacles, 
not to model the effect of obstacles on the wind field. Therefore, there is no need to measure wind 
speed and direction right next to obstacles. Instead, wind speed and direction should be measured at 
a distance where drones could realistically operate. The drones will fly in the wake of the trailer and 
trees. See Figure 8 (top side is north) for the drone’s positioning relative to the tree line with a distance 
offset between the tree line and the centre of the drone area of about 40 metres. Wind direction 
during the experiment day was predominantly southwestern. For the trailer scenario, a distance offset 
of about 10 metres is used. 
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Figure 8: Positioning of the drones relative to the tree line 

(black dots: reference positions, circle: dynamic measurement drone flight path) 

To determine how much the accuracy is affected by flying drones compared to static/hovering drones, 
the scenarios are repeated using dynamic drones with a set speed of 3 m/s, which is a safe speed given 
the smallest triangle side length of 20 metres. 

To conclude, please refer to Table 3 for the scenario definition table, in which the different scenario 
combinations are presented for each independent variable. Scenario 1 is the most extensive scenario, 
which will be the baseline scenario to compare with other scenarios. It consists of three different 
triangle side lengths and four altitudes. The reasoning behind the different triangle side lengths is to 
investigate the effect of drone density on the MPM estimations, whereas the altitudes allow the 
comparison between low and high altitudes. The trees scenario consists of three different altitudes, 
two below the height of the tree line (< 20 metres) and one slightly above. Due to time restrictions, 
multiple triangle sizes for the trees scenario could not be executed. The trailer is approximately ~3 
metres in height. 

Table 3: Scenario definition table 

# Obstacle Triangle sizes [m] Altitudes [m] Speed [m/s] Total combinations 

1 - 60, 40, 20 5, 10, 20, 100 0, 3 24 

2 
Trailer 

z ≈ 3 m 
60, 40, 20 5, 10 0, 3 12 

3 
Trees 

z ≈ 20 m 
40 5, 10, 20 0, 3 6 

2.3.3.4 Apparatus 

Four Foxtech Hover 1 quadcopter-based drones were developed in this study; see Figure 9. The take-
off weight of each drone was about 2.5 kg (batteries included) and unfolded dimensions of 64 × 64 × 
28 cm. The additional payload weight was 1 kg, and the maximum flight duration was 15-20 minutes. 
The Foxtech Hover 1 uses the Pixhawk Cube Orange flight controller with 2 Global Navigation Satellite 
System (GNSS) and triple-redundant Inertial Measurement Units (IMU). 
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Figure 9: METSIS drone/sensor configuration 

Anemoment TriSonica Mini 3D-ultrasonic anemometers were installed on top of each drone to 
measure the horizontal and vertical wind vectors. The anemometer sensor unit was mounted on the 
tip of a 50 cm aluminium pole to reduce the effect of the propeller on the wind measurements (Sasaki 
et al., 2021). The TriSonica Mini has the following manufacturer stated specification: wind speed range 
of 0-50 m/s and accuracy of ±0.1 m/s for wind speeds between 0-10 m/s. The 3D wind direction range 
is 360° for the horizontal direction and 15° for the vertical direction with an accuracy of ±1°. This is 
well within the meteorological requirements of the World Meteorological Organization (WMO), which 
states that using any type of modern instrumentation, an accuracy for wind speed measurements of 
0.5 m/s below 5 m/s and better than 10% above 5 m/s is usually sufficient. Wind direction should be 
measured with an accuracy of 5° (WMO, 2014). The digital output is RS-232, a standard for serial 
communication transmission of data with a digital output rate between 1-10 Hz. 

The software used to control the drones is the open-source ArduPilot Mission Planner software. 
Mission Planner enables the use of autonomous, unmanned vehicle systems for almost any vehicle 
and application. Furthermore, it allows the generation of pre-programmed waypoint files for the 
drones. This allows the reference and measurements drones to autonomously fly to the desired 
measurement locations and, in case of the dynamic scenarios, to autonomously fly the circular flight 
path at a predefined radius. The drones use ArduPilot's extended Kalman filter estimation system 
(Pittelkau, 2003) to estimate vehicle position, velocity and angular orientation based on gyroscopes, 
accelerometer, magnetometer, GNSS, barometer and ground distance measurements. ArduPilot 
supports MAVLink, which is a wireless messaging protocol that allows drones to communicate with 
ground stations. 

Two-thirds through the experiment, one of the drones had a crash landing – ironically due to a sudden 
gust of wind during landing. The drone was repaired immediately, however, its wind sensor had 
suffered irreparable damage. Because of timing constraints, it was decided to continue the last third 
of the experiment with three drones – two measurement drones and one reference drone. This mainly 
affected the Trailer scenario. Nonetheless, this unexpected event did not have a significant effect on 
the execution of the experiment. 

https://en.wikipedia.org/wiki/Technical_standard
https://en.wikipedia.org/wiki/Serial_communication
https://en.wikipedia.org/wiki/Serial_communication
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2.3.3.5 Measurement Procedure 

Annex III presents a snippet of the Experiment Plan. This was used to coordinate the course of each 
scenario during the experiment. The snippet contains all the required tests to complete scenario 1. 
For each test, a Mission Planner waypoint file is created. These waypoint files are programmed while 
keeping the maximum battery life of the drones in mind for the most efficient flight time usage. 

Given test 1 of the Experiment Plan, the procedure is as follows: 

1. Load Mission Plan waypoint files for test 1 and start the GUI. 

2. Start drones one by one. 

3. Check incoming data in to the METSIS GUI; see Section 2.3.3.6 below. 

4. Command drones to fly to desired position one by one. 

5. Start run-in timer of 20 seconds to generate wind fields with data from measurement 

drones using the GUI (to allow the MPM to settle at a steady-state). 

6. After 20 seconds, start reference drone measurement timer of 10 seconds. 

7. After 10 seconds, reposition reference drone to the next reference location. 

8. Repeat steps 6 & 7 three more times. 

9. Repeat steps 5 to 8 for the dynamic scenario. 

10. Repeat steps 5 to 9 for each triangle size and altitude combination. 

11. Land the drones, change batteries and prepare for the next test. 

2.3.3.6 Data flow and networking 

Figure 10 presents the METSIS data flowchart, which is an overview of the entire data network. The 
data of the four drones are transmitted by a 433 MHz transmitter and received at the four Drone 
Ground Stations (DGS). Each drone transmitter-receiver pair has its own channel ID and operates at a 
slightly different frequency to reduce interference. Another transmitter-receiver pair will transfer the 
sensor data from all four sensors to a single Sensor Ground Stations (SGS). 
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Figure 10: METSIS data network flowchart 

Using Python package “PyZMQ”, a python implementation of the well-known ZeroMQ messaging 
library, the data from all ground stations was transferred to the MPM-computer via a 
Publisher/Subscriber pattern. PUB-sockets (ground stations) are connected to a SUB-socket (MPM-
computer) which is bound to a computer network port number. Due to multiple PUB-sockets, the data 
of specific ground stations may drown out other ground stations. Therefore, data is interleaved (“fair-
queued”) so that no single publisher drowns out the others. This PUB/SUB-pattern was also used for 
script-to-script object transfer at the MPM-computer. 

Logging 

The data required for answering the research questions are obtained using a quantitative data 
collection method during the METSIS experiments. All data is automatically organized in a separate 
folder for each scenario combination. In addition to logging the raw drone and sensor data, the 
processed data will be logged as well. According to the WMO, it is desirable to sample the wind signal 
data every 0.25 seconds to be able to measure wind gusts (WMO, 2014). Therefore, the raw drone 
and sensor data will be logged at a frequency of 4 Hz. The processed data will be logged at a frequency 
of 1 Hz, as this is the MPM-update rate (see Section 3.2.6). The approximate logging time per scenario 
combination is 2 minutes, providing a sample size of 480 data points per drone. The reference drone 
will sample for 10 seconds × 4 reference drone positions ≈ 160 data points. 

By adding the vertical wind component to the MPM, the minimal required parameters for 3D wind 
field estimation using the MPM are: 

• Position, on a Cartesian coordinate system (𝑥𝑥,𝑦𝑦, 𝑧𝑧) 
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o Converted from the longitude, latitude and altitude measurements of the drone 

GNSS. 

• Horizontal and vertical wind vectors in Earth-Centred, Earth-Fixed (ECEF) frame (𝑢𝑢, 𝑣𝑣,𝑤𝑤) 

o Converted from the 𝑤𝑤𝑝𝑝 ,𝑤𝑤𝑝𝑝 ,𝑤𝑤𝑝𝑝 wind components of the sensor in the body frame 

using drone velocity, attitude and course correction. 

The drone and sensor output the parameters as depicted in Table 4 and Table 5. In addition, the drone 
and wind sensor output data such as temperature and accelerations, which will be logged in the same 
file for possible follow-up research. Using the drone airspeeds, course, and attitude angles, a 
coordinate transformation will be applied to the sensor wind measurements to derive the true 
𝑢𝑢, 𝑣𝑣, and 𝑤𝑤 meteorological wind components in the ECEF frame from the measurements in the body-
frame of the drone, where a positive 𝑢𝑢 wind is from the west, and a positive 𝑣𝑣 wind is from the south. 
Vertical wind direction is given by 𝑤𝑤, which is positive when wind travels upwards. 

Table 4: Logged drone parameters 

Parameter Symbol Unit 

ID ID - 

Timestamp t [Y-M-D 
h:m:s:ms]  

Latitude lat [deg] 

Longitude lng [deg] 

Altitude Above 
Sea Level (ASL) z [m] 

Horizontal speed 𝑣𝑣𝑝𝑝𝑝𝑝 [m/s] 

Vertical speed 𝑣𝑣𝑝𝑝 [m/s] 

Course angle 𝜑𝜑 [deg] 

Pitch angle 𝜃𝜃 [rad] 

Roll angle 𝜙𝜙 [rad] 

Yaw angle 𝜓𝜓 [rad] 

 

Table 5: Logged wind sensor parameters 

Parameter Symbol Unit 

ID ID - 

Timestamp t [Y-M-D 
h:m:s:ms] 

x-axis wind component 𝑤𝑤𝑝𝑝 [m/s] 

y-axis wind component 𝑤𝑤𝑝𝑝 [m/s] 

z-axis wind component 𝑤𝑤𝑝𝑝 [m/s] 

 

After the raw drone and sensor data has been correlated and transformed to ECEF, the resulting data 
(a collection of approximately four measurements per drone) is logged as well. This ‘processed data 
log’ can be used to re-run the MPM after the experiment: 
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• Timestamp [Y-M-D h:m:s:ms] 

• Latitude & longitude [degrees] 

• Altitude [m] 

• Corrected u wind component [m/s] 

• Corrected v wind component [m/s] 

• Corrected w wind component [m/s] 

Unit and sensibility check 

After the drone and sensor data has been logged, it is subjected to an automatic unit and sensibility 
check. The unit and sensibility check is a simple Python script that will remove a measurement from 
the data flow if it is not within predefined value limits due to unreliability in wireless serial 
communication. This ensures, first and foremost, the proper functioning of the drone/sensor 
correlation and the reference frame transformation, which depends on the drone position and 
attitude. It functions based on the following principle: 

• Documents what the script expects: 

o All required drone and sensor variables. 

o Sensible values within predefined limits; see Table 6. 

• Check whether sensor and drone data are conforming to the expectations. 

• Data that fails the test will be removed from the data flow. 
 

Table 6: Unit and sensibility check limits 

Drone data Drone limits {min, max} Sensor data Sensor limits {min, max} 
lat {-90, 90} 𝑤𝑤𝑝𝑝 {-15, 15} 
lng {-180, 180} 𝑤𝑤𝑝𝑝 {-15, 15} 
z {-10, 200} 𝑤𝑤𝑝𝑝 {-10, 10} 

𝒗𝒗𝒙𝒙𝒙𝒙 {0, 20} 

 
𝒗𝒗𝒛𝒛 {-10, 10} 
𝝋𝝋 & 𝝍𝝍 {0, 2π} 
𝜽𝜽 & 𝝓𝝓 {-0.5π, 0.5π} 

  

Moving median filter 

To compensate for the noisy wind sensor data, a simple moving median filter will be applied to the 
incoming data stream. Much like a moving average filter, a moving median is the median of a set 
amount of consecutive measurements (window size) in a time series (Hyndman, 2009). A moving 
median is conceptually similar to a moving average, except that a single outlier in the moving average 
greatly affects the mean (Stone, 1995). The median is calculated by sorting all the numbers in the 
window and selecting the middle number. Given a window x of n values, if the number of values is 
odd, the number in the middle of the window is the median m (Eq. 15). Else, if the number of values 
is even, then the median is the simple average of the middle two numbers (Eq. 16). The moving median 
filter is applied to the instantaneous 𝑤𝑤𝑝𝑝 ,𝑤𝑤𝑝𝑝 , and 𝑤𝑤𝑝𝑝 sensor measurements. 

 𝑚𝑚 =  𝑥𝑥𝑘𝑘;                   𝑘𝑘 = (𝑛𝑛+1)
2

 (15) 
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𝑚𝑚 =  (𝑝𝑝𝑘𝑘+𝑝𝑝𝑙𝑙)
2

;          𝑘𝑘 = 𝑛𝑛
2

;    𝑙𝑙 = 𝑛𝑛
2

+ 1 (16) 

Due to the chaotic nature of wind, a small window size of five samples has been used for this 
experiment with the aim to retain fluctuations in wind velocity. Figure 11 depicts a comparison of such 
raw data versus moving median sensor data. 

 
Figure 11:Applied moving median filter example on wind sensor 𝑤𝑤𝑝𝑝 measurements 

 

Drone/sensor correlation 

A drone and sensor measurement timing difference make it difficult to combine the two incoming 
data streams of drones and sensors. Therefore, a drone-sensor correlation function is written in order 
to match the timing difference by interpolating the drone states to the wind sensor time. In short, 
given two known drone measurements at 𝑠𝑠 = 1 and 𝑠𝑠 = 3 given by coordinates (𝑥𝑥0, 𝑦𝑦0) and (𝑥𝑥1,𝑦𝑦1) 
and one sensor measurement at 𝑠𝑠 = 2, the interpolated measurement 𝑦𝑦 at sensor time 𝑥𝑥 is defined 
as (x = 2 in this example): 

𝑦𝑦 =   𝑦𝑦0 + (𝑥𝑥 − 𝑥𝑥0)
𝑦𝑦1 − 𝑦𝑦0
𝑥𝑥1 − 𝑥𝑥0

 (17) 

 

Reference Frame Transformation 

The reference framework transformation utilizes the position, attitude, drone velocities and wind 
information from the drone-sensor correlation to take into account the motion and attitude effects 
from the drones as the wind sensor measures wind in its body reference frame. Furthermore, a 
correction for the drone and sensor offset is applied, given the length of the aluminium pole of 50 cm. 
The correction framework outputs the meteorological 𝑢𝑢, 𝑣𝑣, and 𝑤𝑤 wind components in the ECEF-
frame. Two reference frames are considered: the body reference frame of the drone and the earth 
reference frame. See Annex V for more details on the reference frame transformation. 

MPM 

The update rate of the MPM is set to 1 second. Given the drone and sensor datalink frequency of 4 
Hz, a collection of ideally four measurements per drone will be sent to the MPM during each update. 
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The MPM samples the data from the three measurements drone and sequentially performs the 
following steps: 

1. Collect wind components and position variables 

2. Run the probabilistic rejection mechanism (Eq. 1) 

3. Generate particles and add measurement noise to particle states (Eq. 2) 

4. Update existing particles using the random walk motion model (Eq. 3) 

5. Re-sample the particles to maintain the number of particles according to age (Eq. 4) 

Data from the reference drones travel a different route. The MPM is able to reconstruct wind 
information at any given location. Given the reference measurement locations, the MPM construction 
model is called upon (Eq. 5-8). The MPM will return wind information at the reference drone locations 
during a reference measurement period. The script will calculate the error between the MPM 
estimations and the reference drone measurements in terms of MAE and save it for post-experiment 
analysis. 

Table 7 gives an overview of the MPM control parameter values that were used during the experiment. 
These values were determined by a preliminary PSO using simulated drones and a simple 
Computational Fluid Dynamics (CFD) model of the experiment area. 

Table 7: MPM control parameters used during the experiment 

Parameters Units Value 

X-boundary [m] (0, 140) 

Y-boundary [m] (0, 140) 

Z-boundary [m] (0, 170) 

XY neighbourhood [m] 18.199 

Z neighbourhood [m] 25.698 

Minimal particle density [1/𝑚𝑚3] 0 

Ageing parameter [s] 180 

Distance weighting parameter [m] 30 

XY particle random walk [m] 14.227 

Z particle random walk [m] 23.500 

Particle wind variation [m] 0.2 

Acceptance probability factor - 29.465 

XY particle random walk factor - 0.268 

Z particle random walk factor - 0.165 

 

 

HTTP POST to AirHub API 

Every 30 seconds, the estimated 3D wind field in the MPM-specified boundary area is transmitted to 
the AirHub Drone Operations Center Application Programming Interface (API) via a Hypertext Transfer 
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Protocol (HTTP) POST request method. A large collection of wind vector estimations is collected in a 
JSON file (a data-interchange format). The same architecture could be used to POST the data to other 
U-space service providers. 

Graphical User Interface 

The GUI is designed specifically for the METSIS experiment. A screenshot of the main screen is 
presented in Figure 12. The GUI offers the following functionalities during the experiment: 

• Set scenario parameters 

o Scenario number 

o Triangle size 

o Altitude 

o Speed 

• Set control parameters 

• System data logger to log measurement start and stop times and reference drone start and 

stop times. This allows us to re-run the experiment virtually using the exact timeframes that 

were used during the experiment. 

• Measurement drone ready button, which starts the MPM Python scripts. 

• Reference drone ready button, which starts a reference drone measurement. 

• Visualization of the four sensor-measured wind magnitudes and directions. 

• Check data button to check if data is coming in from all four drones and sensors. 

• Cancel test button, which resets the scenario in case of a test failure. 

 
Figure 12: The METSIS GUI main window 

2.3.3.7 Post-experiment data analysis method 

The following paragraphs explain the metrics used to analyze the data, and how this is used to answer 
each research question. 
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Performance metric  

As recommended in the Guidelines for Nowcasting Techniques (WMO, 2017), good performance 
metrics are the MAE and the Root Mean Squared Error (RMSE). In terms of RMSE, the effect of large 
errors has an increasingly large effect, due to the squared error. Thus, RMSE is sensitive to outliers 
(Chai & Draxler, 2014). The meteorological accuracy requirements for any type of modern wind 
sensors are depicted as a MAE of 0.5 m/s below 5 m/s and better than 10% above 5 m/s, as stated by 
the WMO (WMO, 2014). Therefore, the choice has been made to only consider MAE. For the first 
research question – the effect of obstacles – the MPM performance will be quantified in terms of the 
MAE of the following dependent variables: 

1. Horizontal wind speed [m/s] 

2. Vertical wind speed [m/s] 

3. Horizontal and vertical wind direction [deg] 

a. Wind direction in degrees {0, 360} relative to the true north. 180 degrees wind is 

southerly wind, and 90 degrees wind is easterly wind. 

b. Vertical wind direction on the XZ and YZ planes, where the XZ plane defines the 

North-South component and the YZ plane the East-West component of the vertical 

angle. 

The remaining research questions will only consider the horizontal wind speed and direction, as mainly 
the research question regarding obstacles is expected to have a significant effect on the vertical errors. 

MAE is, as the abbreviation implies, defined as the average of the absolute errors. Errors are the 
difference between the observed values and the true values (ISO, 1994). This metric is used to verify 
experimental results on an absolute scale using the same units. Moreover, 3D wind magnitude will be 
quantified in terms of the Mean Absolute Percentage Error (MAPE) when the observations get larger 
(WMO, 2017), which provides a better understanding of the magnitude of the error in relation to the 
true observed values (Botchkarev, 2018). A high MAE would imply that the model estimates are not 
close to the true observed values. Model improvements can be evaluated by using the MAE as a frame 
of reference. The formula to calculate MAE is: 

𝑀𝑀𝑀𝑀𝐸𝐸 =  
1
𝑁𝑁
�|𝑒𝑒𝑖𝑖 − 𝐶𝐶𝑖𝑖|
𝑁𝑁

𝑖𝑖=1

 (18) 

where: 

• N is the number of observations from the reference drone for a specific scenario 

combination. 

• e are the MPM estimated values. 

• o are the reference wind sensor observed values. 

 

Low altitude accuracy measurement with and without obstacles 

Using two types of drones (measurement and reference drones), data from three measurement 
drones will be fed into the MPM to estimate the wind fields. Accuracy will be determined by 
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comparing the MPM estimate to measurements from a reference drone. MAE between MPM wind 
field estimates and reference drone measurements at the four accuracy locations can be used to 
quantify accuracy (see Figure 13). To determine the effect of static obstacles, the accuracy of scenarios 
with and without static obstacles will be compared, given that other scenario parameters are kept 
constant. A higher MAE for the scenario with a static obstacle would imply static obstacles negatively 
affect the MPM accuracy. 

 
Figure 13: METSIS accuracy measurement principle using two types of drones 

Effect of drone motion 

By comparing the static and dynamic scenarios, the effect of drone motion on the MPM accuracy can 
be determined. The dynamic drone scenarios with speeds of 3 m/s will be compared to static drone 
scenarios. 

Effect of measurement density 

There are two methods to measure the effect on accuracy by drone density. Firstly, by artificially 
deleting one measurement drone from the set post-experiment. An increase in MAE would show the 
importance of a dense area of drones for accurate estimations. In contrast, a negligible decrease 
suggests the MPM propagation model functions well on areas with minimal measurement activity. 
Secondly, the MPM propagation model can be evaluated by increasing the triangle size and comparing 
the accuracy of the scenarios with different equilateral triangle side lengths. 
 

Effect of measurement errors 

The probabilistic rejection mechanism – or, the MPM’s resiliency to measurement errors – can be 
validated by adding artificial random noise to measurement drones. Every wind sensor measurement 
will be subjected to Gaussian noise. They describe a commonly occurring distribution of samples 
influenced by random disturbances, such as random measurement errors. The probability density 
function for a Gaussian distribution is defined as: 

𝑝𝑝(𝑥𝑥) =  
1

√2𝜋𝜋𝜎𝜎2
𝑒𝑒−

(𝑝𝑝−𝜇𝜇)2
2𝜎𝜎2  (19) 

 

where 𝜇𝜇 is the mean and 𝜎𝜎 the standard deviation. Two degrees of Gaussian noise will be used with a 
standard deviation of 10% and ~25% of the average measured wind speed. 
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2.4 Results 

2.4.1 Wind tunnel results 

This section provides the results of the wind tunnel tests used to analyze the accuracy of the 
Anemoment Trisonica Mini wind sensors used in this study. Figure 14 visualises the 𝑤𝑤𝑢𝑢𝑣𝑣 error 
distribution of test samples per pitch angle for the three wind tunnel speeds considered. The distance 
between the second quartile line of the boxplots and the actual wind tunnel speed (dashed line) 
indicates the accuracy, while the distance between the minimum and maximum values of a boxplot 
indicates the variability or precision. Negative pitch angles show an unusual low accuracy, which is 
likely due to an obstruction of wind by the wind sensor’s frame. In addition, drone rotor power has a 
noticeable effect on the accuracy due to propeller downwash, where the effect is more significant 
during the 6 m/s wind tunnel speed, indicating that the propeller downwash has a stronger effect 
during lower wind speeds. While examining the spread, the precision of the wind sensors is decreasing 
slightly with increasing wind tunnel speed. 

8

 
Figure 14: Error distribution of sensor horizontal wind speed to wind tunnel speed 

Figure 15 depicts the vertical 𝑤𝑤𝑤𝑤 error distribution. Due to the wind tunnel stream being purely 
horizontal, the sensor vertical wind measurement should ideally be equal to zero. As with the 
horizontal accuracy, vertical accuracy degrades with angle of attack and wind speed, but at an 
increased rate. The precision is high during the 6 m/s wind tunnel speed without rotor-induced 
downwash. An increase in wind tunnel speed and drone rotor power signifies a slight decrease in 
precision. 
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Figure 15: Error distribution of sensor vertical wind speed to wind tunnel speed 

Figure 16 presents the RMSE for the horizontal (left) and vertical (right) wind speeds. At higher angles 
of attack, turbulence is most likely changing the local wind field at the sensor, causing different 
horizontal and vertical wind speeds relative to the free stream. This means that the sensor output at 
higher angles is not very useful for the MPM, and the drone airspeed will likely have an effect on the 
MPM accuracy. The vertical RMSE is bigger than desired and likely not that useful for dynamic drone 
scenarios, where corrections for roll and pitch angles are applied due to drone motion. 

 

Figure 16: Wind sensor RMSE against drone pitch angle for horizontal (left) and vertical (right) direction 

Based on the above results, the following main conclusions can be drawn about the performance of 
the selected wind sensor: 
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• Accuracy degrades with angle of attack in both horizontal and vertical directions, which is 

likely due to induced turbulent flow around the wind sensor by wind obstruction of the sensor 

frame. A wind tunnel smoke test could prove this hypothesis. 

• Propeller-induced flow mainly adds a more significant component to the measured wind 

during low pitch angles and low wind tunnel speeds. This suggests that propeller-induced flow 

will have an increasingly negative effect on accuracy during low wind scenarios. Nonetheless, 

it does not seem to have an effect on precision, which is presumably due to constant rotor 

power. During the experiment, rotor power constantly changes according to external forces 

acting on the drone, which in return reduces precision due to an increased amount of random 

error. 

• Sensor precision is lower than desired, especially in the vertical direction with propeller-

induced flow. This results in noisy wind measurements and, therefore, a moving median filter 

is applied to the incoming data stream to account for expected random errors. 

In relation to the true wind tunnel speeds (≥ 6 m/s for horizontal and 0 m/s for vertical), the magnitude 
of the error is greater in the vertical direction, resulting in less accurate measurements. 

2.4.2 Flight test results 

2.4.2.1 Overall results 

Annex IV presents an overview of all the wind magnitude and angular errors – in terms of MAE (Eq. 
18) –, including the average wind velocity (�̅�𝑣𝑤𝑤) for each scenario combination during the experiment. 
As stated by the meteorological requirements of the WMO, using any type of modern 
instrumentation, an accuracy for wind speed measurements of 0.5 m/s below 5 m/s and better than 
10% above 5 m/s is usually sufficient. Wind direction should be measured with an accuracy of 5° 
(WMO, 2014). Comparing these requirements to the METSIS experiment results, the MPM slightly 
underperforms, but shows overall very promising results. This is especially true for experiment 
scenarios during high wind speed conditions. For scenarios with an �̅�𝑣𝑤𝑤 of > 5 m/s, the accuracy in 
terms of MAPE is ~88%. The one scenario with a �̅�𝑣𝑤𝑤 of > 6 m/s shows a promising 94.3% accuracy on 
the 3D magnitude. In comparison to accuracy results (84.5% to 95.7% without modelling 3D wind 
fields) from Thielicke et al. (2021), the MPM estimates are fairly accurate. The average horizontal and 
vertical angular MAE for the baseline scenario are respectively 15.6° and 19.3°, with the lowest 
achieved errors being 8.0° and 8.6°. Comparing these results to Thielicke et al. (error of 2.6° to 8.0°), 
the estimations of the MPM are once more fairly reasonable. 

Figure 17 presents a bar chart overview of the average wind magnitude MAE and horizontal and 
vertical angular MAE per scenario. A minor increase in wind magnitude error is perceived for the 
obstacle scenarios, when compared to the baseline. The tree line scenario shows a significant increase 
in angular error on the XZ-plane. 
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Figure 17: METSIS experiment average 3D wind magnitude and angular MAE per scenario 

Given the data in Annex IV and Figure 17, there appears to be a relationship between the angular 
errors and the average wind speed. Using Python’s statsmodels library, three multivariate Ordinary 
Least Squares (OLS) regression analyses are performed to statistically analyze the effect of the average 
wind speed on the MAE. The full OLS results are visible in Annex VI. To summarize, the average wind 
speed seems to have a significant effect on the angular errors, in addition to the tree line scenario 
having a significant effect on the vertical angular error. According to the OLS, no independent variable 
significantly affects the 3D wind magnitude error. Plotting the line of best fit for the (combined) 
vertical and horizontal MAE over the average wind speed from a simple linear regression model 
suggests that the average wind velocity has a larger impact on the angular errors than the obstacle 
types; see Figure 18. Nonetheless, there is insufficient data available with low wind speeds to make a 
definitive conclusion, and the effect of obstacles cannot be excluded. The following paragraph will 
determine the true effect of obstacles, while taking into consideration the effect of the average wind 
speed on the angular errors. 
 

 
Figure 18: Line of best fit (red line) for the average vertical (left) and horizontal (right)  

angular errors over the average wind speeds per scenario 
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2.4.2.2 Research question 1: Effect of static obstacles 

This section will provide an answer to RQ1: What level of accuracy can be achieved with the Meteo-
Particle Model at low altitudes with and without static obstacles? Only static scenarios are considered. 
The baseline scenario will be compared to the trailer and tree scenarios for all common altitudes and 
triangle sizes. Boxplots provide an indication the error distribution of the measured errors for all 
dependent variables, namely: horizontal and vertical wind speed and direction. Lower error indicates 
a better performance of the Meteo-Particle Model. The following paragraphs will analyse the effect 
of obstacles on the MPM horizontal and vertical magnitude and angular errors. 

Horizontal Magnitude Error 

 
Figure 19: Horizontal wind magnitude error overview – static 

Figure 19 visualizes the horizontal wind magnitude error distribution of every static scenario 
combination. Columns denote the different obstacle types, rows represent the different altitudes, and 
boxplot colors represent the triangle sizes. As concluded from the wind tunnel analysis, a low wind 
speed negatively affects the measurement precision and accuracy due to propeller-induced flow. 
Therefore, the average horizontal wind speed �̅�𝑣𝑤𝑤 measured by the reference drone during a specific 
scenario combination is annotated at the bottom of the boxplot. Rotor power of the four drones – 
and, therefore, propeller downwash – are not synchronized, which results in an increase in random 
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measurement error and dissimilarity between measurements of the different drones. This could 
explain the relatively lower precision during the experiment, in comparison to the wind tunnel 
analysis. Triangle sizes and altitudes have a negligible effect on the error difference. Comparing the 
baseline to the trailer scenario, the trailer had no noticeable effect on the horizontal magnitude error. 
The wind distortion effect of trees on the wind is clearly visible; the lowest average wind speeds are 
measured below the tree line (< 20 m). Nonetheless, the visible obstruction of wind during the trees 
scenario shows no noticeable increase in error. To summarize, the MPM performs well within the 
presence of static obstacles compared to the baseline scenario for the horizontal wind speed. 

Vertical Magnitude Error 

 
Figure 20: Vertical wind magnitude error overview – static 

An overview of the vertical wind magnitude error for the static scenarios is given in Figure 20. The 
average vertical wind speed �̅�𝑣𝑤𝑤 measured by the reference drone is annotated. In general, the error 
is high, likely due to the low average vertical wind speeds, where the propeller-induced turbulence 
plays a more significant role. Interesting is the negative vertical wind for the tree line scenario at 5 
meters altitude. This indicates a turbulent wind flow after an obstacle, which may cause fluctuations 
in drone attitude states (Wang et al., 2019). Nonetheless, no increase in error is perceived near 
obstacles. Thus, the MPM performs well given the clear effect of trees on the wind. However, these 
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results are somewhat inconclusive due to the effect of propeller-induced turbulence, increasing the 
random measurement error during low average wind speeds. 

While the error might seem high compared to the magnitude of the vertical wind, plotting the 
reference drone measurements over the MPM estimates - see Figure 21, static baseline scenario, 
triangle size 20 metres and altitude 20 metres - shows that the MPM slightly underestimates the 
average vertical wind speed, but is not able to model instantaneous changes in vertical wind speed. 
This is true for most other scenario combinations as well. Referring back to the construction model of 
the MPM, the wind and temperature information can be reconstructed by computing the weighted 
sum of the wind state information of the surrounding particles. By decreasing the XYZ neighbourhood 
parameters – and, therefore, reducing the effect of the weighted sum – might prove to assist the MPM 
in modelling instantaneous changes. Furthermore, reducing the ageing parameter allows the MPM to 
more easily track rapid local changes in wind estimations, while losing stability for the larger airspace. 

 
Figure 21: Comparison of the vertical wind magnitude of the reference drone and MPM estimates for one scenario 

combination 

Horizontal angular error 

The static scenario horizontal angular error distributions are given in Figure 21. Using the results from 
Thielicke et al. (2021) as a reference, where a wind angular error between 2.6° to 8.0° is realised, the 
horizontal angular errors are practicable for scenarios with �̅�𝑣𝑤𝑤 > 4 m/s with an average error of 12.6°. 
Altitudes below the tree lines show a recurring trend regarding the relative error, indicating the effect 
of the tree line on the angular wind. In contrast to the results for the vertical magnitude error, the 
tree line scenario shows an increase in error. The trailer has no significant effect on the angular error. 
Consistently, there is room for improvement in regard to measurement quality during low wind speed 
scenarios, especially when the obstruction of wind behind substantial obstacles is such an important 
factor in urban areas. 
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Figure 22: Horizontal wind angular error overview – static 

Vertical Angular Error 

Figure 23 presents the vertical angular error distributions on the XZ and YZ planes. The average 
measured wind speed of respectively the XZ and YZ wind magnitude measurements of the reference 
drone are annotated at the bottom of the boxplots. For the trailer and tree line scenarios, the drones 
were positioned north of the obstacles. The figure shows that the MPM performs well during high 
average wind speed scenarios. Subsequently, the tree line scenario’s XZ plane shows a significant 
decrease in precision (random error). Similar to the horizontal angular error, it can be concluded that 
the vertical angular errors are highly dependent on the wind speed and, concurrently, the increased 
effect of wind distortion and propeller-induced turbulence. With better quality measurements, the 
error might reduce. This needs to be examined further. 
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Figure 23: Vertical wind angular errors overview – static 

Overall conclusion on the effect of static obstacles 

Despite the relative high measurement error of the ultrasonic wind sensor during low wind scenarios, 
the MPM performs well on the horizontal magnitude and angular accuracy. The vertical magnitude 
accuracy of the MPM is difficult to judge due to poor sensor accuracy in the vertical direction. It is not 
possible to use the reference drone as ground truth in the vertical direction. Nonetheless, the MPM 
performs well given the average vertical magnitude, while lacking in modelling instantaneous changes. 
In contrast, the MPM performs exceptionally well on the vertical angular accuracy at high average 
wind speeds. The effect of obstacles on the error of the four independent variables are as follows: 

• The effect of obstacles on the horizontal magnitude error seems negligible. 

• The effect of obstacles on the vertical magnitude error seems negligible but somewhat 

inconclusive. 

• The effect of trees on the horizontal angular error shows an increase in error, which is likely due 

to a decrease in wind speed by the obstacle-induced wind distortion. 
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• The effect of trees on the 𝜃𝜃𝑝𝑝𝑝𝑝-plane shows a significant increase in error, while the 𝜃𝜃𝑝𝑝𝑝𝑝-plane error 

is highly accurate. This may be due to respectively a decrease and increase in average wind speed 

on the respective plane and, therefore, random measurement error. 

2.4.2.3 Research question 2: Effect of drone motion 

This section will answer RQ2: How is accuracy affected by the motion of the drone? To answer this 
question, the static baseline scenario will be compared to the dynamic baseline scenario. The contour 
plots of the dynamic scenarios show dissimilarity between the wind direction of the static reference 
drone and the estimations of the MPM. Figure 24 shows such contour plot of the dynamic baseline 
scenario (triangle size 40 m, altitude 20 m) at three different timeframes, where the black arrows 
represent the MPM estimations, the blue arrow the reference drone measurements and the red 
arrows the measurement drone measurements. The green gradient indicates the confidence level of 
the wind field estimations. Given the MPM output matches the measurement drones input, the 
dissimilarity in wind direction between the reference and measurement drones suggests a 
measurement error. 

 
Figure 24: Contour plot of perceived measurement errors during dynamic scenarios 

(red arrows: measurement drones, blue arrow: reference drone, black arrows: MPM estimates) 

Plotting the horizontal wind magnitude and direction on ECEF-frame over the drone shows that the 
magnitude and direction follow a sinusoidal trend with the course; Figure 25. Wind is stochastic, and 
therefore, a clear sinusoidal trend is not representative of true wind states. Even though the drone 
motion is corrected for, the sinusoidal trend shows that the sensor measurements are incorrect. 
Correspondence with the wind sensor manufacturer Anemoment suggested that the motions of the 
drones are causing local turbulence around the TriSonica Mini. Nichols et al. (2017) investigated 
sources of error in inertial wind measurements from drones. They concluded that errors in aircraft 
state estimations (translation and rotation) have a great impact on the estimation of wind states. This 
aligns with the results shown in Figure 24, given the clear correlation between estimated wind 
magnitude and the drone course. Therefore, the dynamic scenarios of the METSIS experiment are 
unusable, and the effect of motion on the MPM accuracy remains inconclusive. A better solution for 
dynamic UAV-based wind measurements is required. 
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Figure 25: Line graph of the horizontal wind magnitude and direction with a clear sinusoidal trend  

given the drone course during dynamic scenarios 

2.4.2.4 Research question 3: Effect of measurement density 

This section will provide an answer to RQ3: How does the number of drones (i.e., measurement 
density) affect the accuracy of the wind field? To answer this question, only the static baseline scenario 
will be considered. By artificially deleting a measurement drone from the measurement data, the 
resulting accuracy of horizontal wind speed and direction will be compared to the accuracy depicted 
in Section 2.4.2.2. 

 
Figure 26: Contour plot (XY-plane, 20 metre altitude) comparison of drone density effect on accuracy 
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Figure 26 shows the contour plots of the baseline scenario with triangle size of 40 metres and altitude 
of 20 metres. The columns follow a sequential decrease in measurement drones at equal timeframes, 
while the rows represent two different reference drone locations. The green gradient describes the 
confidence level, where a darker green signifies a high level of confidence. Only a slight decrease in 
accuracy is perceived. Given Figure 25, at least two measurement drones are required at different 
locations for the MPM to be able to perceive changes in wind direction and speed. 

Figure 27 compares the horizontal magnitude (left) and angular (right) errors for the entire baseline 
scenario by artificially deleting one and two drones. The reduced drone density can be compared 
against the original data with three measurement drones. Columns depict the different triangle sizes, 
and boxplot groups depict the number of measurement drones. No notable change in the wind 
magnitude and angular error is perceived. It is clear that the average wind velocity during the 
experiment day was low. At higher speeds, more drones could be necessary. However, a slight 
decrease in both magnitude and angular error is noticeable with a singular measurement drone. The 
boxplots and contour plots indicate there is a dependency on the number of drones. At the minimum, 
two measurement drones are required to have a more accurate depiction of alternations in wind 
direction. Nonetheless, the experiment took place on a single with a constant south-westerly wind. 
With more random wind, the decreasing number of drones could have a more significant impact. The 
effect of drone density on the MPM accuracy is not fully conclusive and requires more 
experimentation, but it shows promising results. 

 
Figure 27: Comparison of horizontal magnitude (left) and angular (right) errors with decreasing drone density 
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2.4.2.5 Research question 4: Effect of measurement errors 

RQ4, to what extent is the Meteo-Particle Model resilient to wind measurement errors by drones in 
the sensor network, will be answered by artificially adding Gaussian noise to the 𝑤𝑤𝑝𝑝 ,𝑤𝑤𝑝𝑝 ,𝑤𝑤𝑝𝑝, and 
course measurements of all measurement drones. This section only considers the entire static 
baseline scenario. The probabilistic rejection mechanism of the MPM (Section 2.1.2) is tested given 
the probability density function of Equation (19), by adding two strengths of Gaussian noise to all 
measurement drones (see Table 8) with respectively a standard deviation of 0.5 m/s and 1 m/s for the 
wind measurements, and 5 degrees and 10 degrees to the course measurements. 

Table 8: Overview of the artificial Gaussian noise levels to wind and course measurements 

 Low noise High noise 

Measurement variable 𝑤𝑤𝑝𝑝,𝑤𝑤𝑝𝑝,𝑤𝑤𝑝𝑝 [m/s] Course [deg] 𝑤𝑤𝑝𝑝,𝑤𝑤𝑝𝑝,𝑤𝑤𝑝𝑝 [m/s] Course [deg] 

Standard deviation 𝝈𝝈 0.5 5 1.0 10 

Mean 𝝁𝝁 0 0 0 0 

% of 𝒗𝒗�𝒘𝒘 (= 3.8 m/s) 13.1 % - 26.2% - 

Figure 28 depicts the horizontal magnitude (left) and angular (right) error with an increase in Gaussian 
noise. There is no noticeable variation in error, even at the highest level of Gaussian noise. This 
indicates that the resiliency of the MPM performs exceptionally well given the relatively high noise on 
the sensor measurements. There seems to be no immediate need to modify the probabilistic rejection 
control parameter. However, the effect during increased wind velocities still has to be examined. 

 
Figure 28: Comparison of horizontal magnitude (left) and angular (right) errors with artificially added Gaussian noise 

(none: no artificial noise, low: 𝜎𝜎 = 0.5 m/s & 5°, high: 𝜎𝜎 = 1.0 m/s & 10°) 
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2.4.2.6 Research question 5: Usage of the data in a U-space system 

This sub-section describes how the real-time wind field data provided by NLR was processed and 
displayed on the AirHub Drone Operations Center (DOC) platform. 

Input processing 

Airhub received live 3D wind field data in JSON format from the METSIS ground station operated by 
NLR. Data was communicated using the HTTP POST method every 30 seconds. This incoming data was 
converted to GeoJSON for easier usage in the AirHub Drone Operations Center frontend. These results 
were cached in the backend until a new update was received from NLR. The DOC frontend requested 
the cached data and showed the GeoJSON in a vector field for visualization. Hereby some filter options 
were added to filter the wind based on the altitude of the measurement and the certainty of an 
observation. 

 
Human-Machine Interface (HMI) Design 

The AirHub DOC is a web-based application for planning, executing and logging drone operations. 
Drone flights can be performed remotely from the DOC through a real-time connection to the drone. 
For the METSIS project, AirHub plotted hyperlocal weather data in the live airspace UTM view of the 
DOC; see Figure 29. For drone operators it is important to have all relevant information available and 
directly visible for the flight planning and execution. 

The following HMI elements have been ddeveloped for the project: 

• Realtime display of the hyperlocal weather datasets on the live airspace map: On the 
airspace map in the DOC in which the drone operator sees all airspace restrictions, NOTAMS 
and obstacles, for his flight planning and execution, he/she now also has insight into the 
hyperlocal weather. This Hyperlocal weather is plotted on the map using wind arrows. This 
gives direct visible insight into the direction, magnitude, altitude of the wind. Moreover, 
wind is implemented as a visual layer on top of the airspace. 

• Wind barb opacity interval slider: For a drone operator it is important to switch data 
information layers on and off quickly and easily, and in some cases to make it transparent so 
that he always retains a good overview. That is why we have built the opacity interface slider 
into the interface, so that the opacity can be adjusted to the wishes of the drone operator. 
This makes it possible to plot the wind without obstructing other parts of the live airspace 
UTM view of the DOC. 

• Confidence interval slider: The certainty of the data is also an important factor for the 
planning and execution of a drone flight, for that reason we have also added the certainty 
interval slider for the hyperlocal wind. This gives the drone operator the freedom to decide 
for themselves the minimum confidence the wind data that is displayed on the DOC should 
have given the type of operation that is being performed. 

• Wind altitude interval slider: A drone flies at different heights during an operation, so it is 
also important that the drone operator has a 3d image of the wind. We solved this in the 
HMI by adding an altitude slider – only wind at the selected altitude is displayed. This makes 
it easy to see what the data shows at different heights. 
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a) Real-time wind data collected during the experiment 

 
b) Simulated test wind data for illustrative purposes 

Figure 29: AirHub Drone Operations Center (DOC) with real-time display of hyperlocal wind.  
 

Experimental Evaluation 

The above described method for communicating real-time wind data from the METSIS ground station 
to the AirHub DOC worked without any issues during the experiment, and new data was received 
every 30 seconds with negligible latency. To further improve the NLR-Airhub data communication 
procedure, it is recommended to investigate the use of web-sockets as an alternative to the HTTP 
POST used currently as web-sockets can achieve higher data throughputs. In addition, the new DOC 
hyperlocal wind HMI developed for this project also functioned flawlessly during the experiment. 
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3 Conclusions, next steps and lessons learned 
3.1 Conclusions 

The METeo Sensors In the Sky (METSIS) project tested the use of drones as an aerial sensor network 
for low-altitude hyperlocal wind nowcasting. The concept aims to provide accurate and low-cost wind 
nowcasts for drones using data collected by drones themselves, and thereby contribute to the U-space 
weather information service. A proof-of-concept flight-test experiment was performed at the NLR 
Drone Center using four drones to determine the feasibility of the METSIS concept at low altitudes 
over the course of a single day. In the current embodiment of the METSIS concept, ultrasonic 
anemometers were mounted to each drone to measure local winds. Wind fields estimated during the 
flight-tests were published in real-time to the AirHub Drone Operations Center – a U-space Service 
Provider – to demonstrate the communication of this data to real end-users. 

This project resulted in the following main technical achievements: 

• Wind tunnel testing of wind sensor: the accuracy of the ultrasonic wind sensor used in this 
project was measured in the NLR Anechoic Wind Tunnel for various wind tunnel speeds, 
angles of attack, and for two drone-propeller speeds. 

• Meteo Particle Model extension: The MPM, which is used to estimate wind fields using 
drone observations, was extended to 3-dimensions, i.e., the vertical dimension was added to 
the MPM. 

• Development of the METSIS ground station: the ground station aggregates the data from all 
the drones (and wind sensors), uses the MPM to estimate wind fields and logs all data. 

• Real-time communication of wind data to a U-space Service Provider (USSP): The ground 
station also transmitted the MPM wind estimates in real-time to the AirHub Drone 
Operations Center. The data can also be communicated to other USSPs using the same 
approach. 

• Drone-sensor configuration: four quadcopter drones were modified to mount the wind 
sensors onto the drones. This included modifications to the drone power supply and 
telemetry systems. 

• Proof-of-concept flight-test experiment: A full day flight-test experiment using four drones 
was performed to study effects of obstacle-induced wind distortion, drone motion, 
measurement density, and measurement errors on the accuracy of the METSIS wind 
nowcasting system. 

Based on the data collected during the flight-tests, the following main conclusions can be drawn: 

• The flight-tests indicated that the METSIS concept is feasible in practice, i.e., that it is indeed 
possible to use drones as a weather sensor network for hyperlocal, low-altitude and real-
time wind field estimations for U-space applications. 

• When comparing the results of the experiment to the World Meteorology Organization 
(WMO) requirements for anemometers, the Meteo-Particle Model (MPM) showed 
satisfactory performance, especially during high wind speed scenarios. Therefore the MPM, 
which was originally developed for high altitude wind estimations for commercial aircraft, is 
considered suitable for low-altitude drone operations after the minor modifications made in 
this project. 

• Answers to the main research questions of the METSIS project: 
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o Effect of obstacles: Static obstacles had a minor effect on overall accuracy at the 
distances at which drones are expected to operate from obstacles. Obstacles had a 
greater impact on wind direction accuracy than on wind speed accuracy. 

o Effect of drone motion: given the low wind speeds during the experiment day, 
propeller induced flow had a strong negative effect on the measurements taken by 
the ultrasonic wind sensor during dynamic/motion scenarios. As such data collected 
from the current experiment could not be used to study the effect of motion on 
accuracy. This is an important topic to reconsider in future research. 

o Effect of number of drones/measurement density: The METSIS wind nowcasting 
system will only be able to model changes in wind direction if such wind direction 
changes are measured by one of the drones involved in the METSIS network. For the 
wind conditions observed during the experiment day, the results indicate that a 
minimum of two drones are needed for the MPM to accurately model changes in 
wind direction. 

o Effect of measurement error: No significant change in accuracy occurred when two 
different Gaussian noise models (with a standard deviation of 10% and 25% of the 
average wind speed during the experiment day) were artificially added to measured 
wind data. This indicates that the MPM’s probabilistic rejection method can 
overcome some degree of random measurement errors. The effect of bias errors has 
not been considered here. 

o Communication of hyperlocal wind data to U-space Service Providers (USSPs): Wind 
data was communicated to the AirHub Drone Operations Center (DOC) in JSON 
format using the HTTP POST. This method proved to be a reliable means to 
communicate wind data to USSPs in real-time. 

Because of the promising results obtained from the flight-tests, it is highly recommended to continue 
this line of research as the implementation of the METSIS concept on a larger scale could result in a 
viable system for hyperlocal wind nowcasts via the U-space weather information service. To this end, 
the following main recommendations are made to further develop this concept towards practical 
implementation: 

• Repeat the experiment over multiple experiment days and consider more experiment 
conditions: The current experiment was performed over the course of a single day during 
which the wind was fairly homogenous. Therefore, it is recommended to repeat the 
experiment over the course of several days and with more obstacles to assess the concept 
for a variety of wind conditions, and thereby arrive at more conclusive answers to the 
research questions considered here. 

• Reduce the effect of propeller induced flow over the wind sensor on accuracy: In this study, 
the effect of drone motion on accuracy could not be quantified because of the uneven 
propeller induced follow over the wind sensors during dynamic scenarios. It is 
recommended to research methods to deal with this so that accuracy during dynamic 
scenarios can be properly investigated. One option is to mount the sensor to the side of the 
drone instead on top of it as designed. Another option is to use the recent method proposed 
by Thielicke et al. (2021) to take into account propeller induced downwash on wind 
estimates based on the mean throttle value. 

• Increase the scalability of the method: The current implementation of METSIS makes of 
direct wind measurements using ultrasonic wind sensors. To increase the scalability of the 
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METSIS concept, it is recommended to investigate indirect wind measurement techniques 
that do not make use of ultrasonic sensors. An example of this would be to infer wind speed 
and direction indirectly using ground speed and air speed measurements. This would require 
additional pressure sensors, but these are much cheaper than ultrasonic wind sensors 
(factor 10 cheaper). A downside of this approach compared to using ultrasonic sensors is 
that vertical winds cannot be measured – however this limitation may not be critical for 
most use cases. If the wind sensor can be removed from the METSIS concept, the previous 
bullet point does not need to be considered for future research. 

• Online optimization of MPM parameters: The accuracy of the method is dependent on the 
settings of the MPM. For this project static settings were used throughout the experiment. It 
is worth investigating if dynamically varying the MPM parameters during flight can reduce 
the error between MPM estimates and the true wind states. This could be achieved by 
implementation a stochastic optimization method such as Particle Swarm Optimization 
(PSO) (Kennedy, J., Eberhart, R., 1995). Regardless of the optimization method used, the 
main challenges with this approach lies in defining a suitable objective function, or perhaps 
multiple objective functions, and speed of the optimization. 

• Data communication to USSPs: Future implementations should transmit wind data to USSPs 
in the GeoJSON data format as this is more widely used for weather data, and use web-
sockets for data transmission as this is more scalable than the HTTP Post method considered 
here. 

• Applications of hyper-local wind: The current research focused on measuring and 
communicating wind data. A logical follow up would to be demonstrate the use of this 
information for optimizing drone operations, including methods that drone operators can 
use to compute wind optimized routes to increase drone range/battery life. This would help 
to illustrate the utility of the METSIS concept in every-day drone operations. 

• Explore the viability of the METSIS concept to other weather parameters such as 
temperature and air pressure. 

 

3.2 Next steps 

The following dissemination activities are planned in the near future: 

1. Participation in the Engage TC 3 (MET) virtual workshop in September 2021 as a panelist  
2. Scientific conference paper (most likely for SID 2021) about the METSIS concept, experiment 

results and recommendations for future research in this topic. 

 

The following actions are recommended to further develop project outcomes: 

1. In order to bring the METSIS concept closer to real-world implementation, the next step 
would be to initiate a larger-scale research project that focuses on the technical 
recommendations mentioned in Section 3.1. The goal of such a large-scale project should be 
to improve the accuracy, the scalability and usability of the METSIS concept, as well as test 
the concept for a wider range of scenarios than what was considered in the present project, 
including scenarios in urban settings. In addition to NLR and AirHub, the consortium for such 
a project should involve a university, a drone manufacturer and a meteorological research 
institute/industry. Ideally, additional U-space service providers can also be involved to speed 
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up the eventual commercialization of the METSIS technology. The most suitable avenue for 
financing this larger-scale project would be the upcoming SESAR 3 calls expected in 2022 – 
especially since the project aims to support the development of the U-space weather 
information service. 

2. In parallel to the preparations for the larger-scale project, it would also be ideal to use the 
infrastructure developed for the METSIS project to initiate smaller-scale internal research 
projects to investigate specific and limited improvements to the METSIS concept. An 
example of such a project could be to investigate the viability of indirect wind 
measurements for drones using airspeed and ground speed measurements. Any 
improvements resulting from such smaller-scale projects could then be validated in detail 
through the larger-scale project mentioned above. 

 

3.3 Lessons learned 

The following lessons have been learned with respect to management aspects: 

• As always, the cooperation between NLR and AirHub went smoothly during this project. 
• COVID caused significant delays in procuring the materials needed for this project. For 

example, the drones were delivered three months after the initial order was placed. But 
such delays were mostly absorbed by the slack available in the original planning. This meant 
that several tasks had to be performed in parallel to complete the project on time. This 
proved to be tricky from a staff resource management perspective. 

• A project advisory board consisting of experts from TU Delft and KNMI participated in this 
project. During the course of the project, four advisory board meetings were conducted. The 
advisory board members provided insightful advice that helped the project to stay on track. 

• The ‘light touch’ approach of catalyst projects made it possible to devote almost all available 
resources towards the technical and dissemination outputs of this project. Very little effort 
was required to fulfil the administrative obligations of this project. Furthermore, Engage 
answered all administrative questions very quickly. 

• It would be recommended to continue catalyst-type R&D projects in future SESAR KTNs. This 
approach makes it possible to take some technical risks without the complexity of a large 
project with many partners that can be difficult to coordinate. But on the other hand, it is 
very important to set achievable targets given the size of the project in order to be 
successful. 
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4 Dissemination 
Table 9 lists the dissemination activities that have been completed and those that are planned in the 
future. Note that dissemination activities that are planned for the future have also been described in 
Section 3.2. 

Table 9: Performed and planned dissemination activities 

# Date Item Link 

1 July 2020 Press release on NLR website at the start of the project Click here 

2 December 2020 Poster at SESAR Innovation Days 2020 (incl. video 
presentation) 

Click here  
(registration required) 

3 January 2021 Project presentation at Engage Thematic Workshop #3 
(MET integration in ATM) Click here 

4 July 2021 METSIS presentation at Amsterdam Drone Week 
Industry Update 2021 

Click here  
(registration required) 

5 July 2021 NLR METSIS video for YouTube and LinkedIn  YouTube and LinkedIn 

6 July 2021 SESAR Newsletter Click here 

7 July 2021 News article on dronewatch.nl Click here 

8 July 2021 METSIS Final Technical Report - 

9 September 2021 
(Planned) 

Panel presentation at Engage Thematic Workshop (MET 
integration in ATM) - 

10 Planned Conference paper (most likely SESAR Innovation Days) - 

 

  

https://www.nlr.org/news/kick-off-metsis-project-real-time-weather-information-for-drone-operators/
https://whova.com/portal/webapp/sesar1_202012/exhibitors/113375/
https://engagektn.com/thematic-challenges/
https://matchmaking.grip.events/adw/app/home
https://www.youtube.com/watch?v=-OVcgA3-hRQ
https://www.linkedin.com/posts/nlr_wind-nowcasts-for-drones-by-drones-activity-6818494329657532416-ViYW
https://www.sesarju.eu/news/winds-change-how-weather-impacts-drone-operations
https://www.dronewatch.nl/2021/07/23/nieuw-systeem-van-nlr-en-airhub-voorspelt-lokale-windsnelheden-op-lage-hoogte/
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6 Annex I: Acronyms 

ADS Air Data System 

ADS-B Automatic Dependent Surveillance-Broadcast 

AOAP Aerospace Operations division ATM and Airport 

API Application Programming Interface 

ASL Above Sea Level 

ATM Air Traffic Management 

AUAS Amsterdam University of Applied Sciences 

CNS Communication, Navigation and Surveillance 

DGS Drone Ground Station 

DOC (AirHub) Drone Operations Center  

ECEF Earth-Centered, Earth-Fixed 

GNSS Global Navigation Satellite System 

GPS Global Positioning System 

GUI Graphical User Interface 

HMI Human-Machine Interface 

HTTP Hypertext Transfer Protocol 

IMU Inertia Measurement Unit 

INS Inertial Navigation System 

JSON JavaScript Object Notation 

https://doi.org/10.1155/2015/931256
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KTN Knowledge Transfer Network 

LIDAR Light Detection and Ranging 

MAE Mean Absolute Error 

MAPE Mean Absolute Percentage Error 

METSIS Meteo Sensors in the Sky 

MPM Meteo-Particle Model 

NLR Royal Netherlands Aerospace Centre 

PSO Particle Swarm Optimization 

PUB/SUB Publisher/Subscriber 

RMSE Root Mean Square Error 

SESAR Single European Sky ATM Research 

SGS Sensor Ground Station 

TU Delft Delft University of Technology 

USSP U-space Service Provider 

WMO World Meteorological Organization 

 

7 Annex II: Glossary 

Accuracy 

When repeated measurements are accurate, the 
measurements are close to the true value of the quantity being 
measured and offers smaller measurement error. In contrast to 
error, accuracy is the degree of closeness to the exact value 
(International Organization for Standardization [ISO], 1994). 

ADS-B 

Automatic Dependent Surveillance-Broadcast (ADS-B) is a 
surveillance technology in which an aircraft determines its position 
via satellite navigation or other sensors and periodically broadcasts 
it, enabling it to be tracked (Sun, Vû, Ellerbroek, & Hoekstra, 2018). 
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Anechoic 

Synonym for “non-reflective”, meaning a space designed to 
completely absorb reflections of either sound or electromagnetic 
waves (Brouwer, 1997). In this project, an anechoic wind tunnel is 
used to reduce background noise during the sensor testing. 

Anemometer A synonym for wind sensor, a device used to measure wind 
speed and direction. 

Control parameter 
The idea of parameter control is to vary the model’s parameters 

so that the algorithm of interest may achieve the best performance 
under certain circumstances. 

Covariance (Cov) Covariance is a measure of the joint variability of two random 
variables (Dowdy, Wearden, & Chilko, 2004). 

Error Experimental error is defined as the exact difference between 
an experimental value and the actual value (ISO, 1994). 

Exponential (exp) 

In mathematics, the most important exponential function is 
𝑦𝑦 =  𝑒𝑒𝑝𝑝, sometimes written 𝑦𝑦 =  𝑒𝑒𝑥𝑥𝑝𝑝 (𝑥𝑥), in which e is the base 
of the natural system of logarithms (ln). Exponential functions are 
often used to represent real-world applications (Dowdy et al., 
2004). 

Hyper-local Is defined as the geographical scale of weather field mapping of 
10–30 meters spatial resolution (Venter et al., 2020). 

Line of best fit 

Also called a “trend line”, which is a line that minimises the 
residual sum of squares between the observed targets in the 
dataset, and the targets predicted by the linear approximation 
(scikit-learn developers, 2020). 

MAE 

The Mean Absolute Error is a scoring rule that measures the 
average error for one specific observation (Chai & Draxler, 2014). A 
boxplot is a method to visualise the distribution of the measured 
MAE of multiple observations. 

MAPE 

The Mean Absolute Percentage Error is fundamentally similar to 
the MAE, except it offers an idea of the magnitude of the error in 
relation to the actual values (Botchkarev, 2018). Commonly, the 
results are multiplied by 100 to present the ratio as a percentage. 
Normalization by actuals is often referred to as percentage 
metrics. 

Mean (𝜇𝜇) 

Researchers use the mean to make statements about the 
centre of measurement data (Dowdy et al., 2004). The mean is the 
average of the sample or population that is being measured. The 
Greek letter μ (mu) is the symbol used for “mean”. 
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Mode S 
Mode S is a Secondary Surveillance Radar process that allows 

selective interrogation of aircraft according to the unique 24-bit 
address assigned to each aircraft (SKYbrary, 2018). 

Monte Carlo 
A Monte Carlo simulation is the modelling of random objects or 

processes by prediction of the probability of different outcomes 
(Kroese et al., 2014). 

Nowcasting 
Forecasting weather in real-time to a couple of hours using 

instantaneous weather data (World Meteorological Organization, 
2009). 

Particle 

For this project, particles can be considered as the information 
medium that carry parameter values such as the location (x, y, z), 
wind speed and wind direction (Sun, Vû, Ellerbroek, & Hoekstra, 
2018). 

Precision 

In contrast to accuracy, where a measurement can be said to be 
accurate if their value is close to the true value of the quantity 
being measured, precision determines whether the measured 
values are close to each other where the least amount of variation 
suggests a high precision (Dowdy et al., 2004). 

Probability (P) 

In an experiment, the probability is a value between (and 
including) zero and one which is the likelihood of that event 
occurring during the experiment (McClave, Benson, & Sincich, 
2008). 

 

If 𝑃𝑃(𝐸𝐸) represents the probability of an event E, then: 

• 𝑃𝑃(𝐸𝐸) = 0 if and only if E is an impossible event. 

• 𝑃𝑃(𝐸𝐸) = 1 if and only if E is a certain event. 

• 0 ≤ 𝑃𝑃(𝐸𝐸) ≤ 1. 

Given the two events "A" and "B", 𝑃𝑃(𝑀𝑀) > 𝑃𝑃(𝐵𝐵) if and only if 
event "A" is more likely to occur than event "B". 

Python 

Python is a programming language designed and developed by 
Guido van Rossum in the early 1990s, where the main 
characteristics of Python are readability and simplicity (Python 
Software Foundation, 2003). 

Random walk 
A random walk is defined as a random process in mathematical 

space. It can be used to analyse and simulate stochastic natural 
phenomenon, such as the chaotic nature of wind (Xia et al., 2019). 

Residual 
The residual of an observed value is the difference between the 

observed value and the estimated value of the measured quantity 
(Dowdy et al., 2004). 
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Sample size 
Sample size refers to the number of individual samples or 

observations used in an experiment. A small sample size will yield 
unreliable results (Zamboni, 2018). 

Set membership (∈) Set membership is denoted by the symbol "∈". Writing "𝑥𝑥 ∈ 𝑀𝑀" 
means that x is an element of set A. 

Sigma (𝛴𝛴) In general mathematics, uppercase 𝛴𝛴 is used as an operator for 
summation. 

Standard deviation (𝜎𝜎) 

The standard deviation measures the variation of the values of 
a variable around its mean value (Dowdy et al., 2004). Put simply, 
the standard deviation is the average distance from the mean 
value of all values in a dataset. 

Stochastic 

Stochastic refers to the property of being well described by a 
random probability distribution. In probability theory, the formal 
concept of a stochastic process is also referred to as a random 
process (Xia et al., 2019). 

Variance (𝜎𝜎2) 

The term variance refers to a statistical measurement of the 
spread between numbers in a data set. More specifically, variance 
measures how far each number in the set is from the mean 
(Dowdy et al., 2004). The square root of the variance is the 
standard deviation (σ). 

Wind distortion 
Wind distortion means the deformation/turbulence in wind 

flow (speed and direction) induced by an obstacle (Van Bussel, 
2008). 

Wind gradient Is defined as a variation of wind speed or direction in the 
vertical direction (Langelaan et al., 2011). 
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8 Annex III: Experiment Plan Excerpt 
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9 Annex IV: Experiment Results Per Scenario 
 

Table 10: Overview of the METSIS experiment 3D magnitude and horizontal and vertical angular MAE 

Scenario Altitude 
[m] 

Triangle 
[m] 

Speed 
[m/s] 

𝒗𝒗�𝒘𝒘 
[m/s] 

MAE 
𝒘𝒘𝒎𝒎𝒎𝒎𝒎𝒎 [m/s] 

MAPE 
𝒘𝒘𝒎𝒎𝒎𝒎𝒎𝒎 [%] 

MAE 
𝜽𝜽𝒉𝒉𝒉𝒉𝒉𝒉 [deg] 

MAE 
𝜽𝜽𝒗𝒗𝒗𝒗𝒉𝒉 [deg] 

Scenario 1 
(baseline) 

5 

20 
0 3.57 0.8754 22.8 14.5 18.8 
3 2.86 0.7271 24.2 99.9 99.3 

40 
0 2.28 0.4160 18.0 33.4 25.5 
3 3.14 0.5997 20.8 70.8 75.7 

60 
0 3.30 0.9578 25.1 28.9 27.7 
3 3.33 0.5079 17.7 54.2 51.9 

10 

20 
0 3.98 0.6608 17.8 8.00 10.8 
3 3.14 0.5083 17.0 90.9 93.9 

40 
0 2.50 0.7149 26.9 26.1 29.6 
3 3.70 1.1325 28.5 59.7 58.9 

60 
0 3.58 0.7310 16.5 8.7 29.1 
3 3.01 0.6378 30.0 42.7 65.3 

20 

20 
0 3.64 0.6367 17.0 12.9 13.9 
3 3.05 0.4429 14.7 95.7 84.2 

40 
0 2.64 0.7047 25.2 17.4 17.3 
3 3.20 0.4761 15.4 63.2 66.8 

60 
0 3.11 0.4694 15.5 9.0 22.3 
3 3.64 0.7227 20.3 45.8 51.8 

100 

20 
0 6.40 0.3631 5.7 8.13 6.82 
3 5.00 0.6314 13.9 84.2 79.2 

40 
0 5.66 0.7302 13.7 10.7 8.6 
3 5.21 0.5590 10.9 62.9 74.5 

60 
0 5.12 0.6990 14.1 9.6 20.9 
3 5.10 0.9776 19.4 38.0 28.0 

Average: 
0 3.82 0.6632 18.2 15.6 19.3 
3 3.70 0.6603 19.4 67.3 69.1 

Scenario 2 
(trailer) 

5 

20 
0 2.77 0.6803 23.8 14.2 30.5 
3 2.83 0.4465 13.8 100.9 94.5 

40 
0 4.90 0.8058 18.7 10.2 25.0 
3 4.15 0.6670 17.7 69.7 48.9 

60 
0 4.79 1.0677 24.2 19.8 14.0 
3 4.11 1.2075 36.7 41.7 31.2 

10 

20 
0 3.13 0.7317 23.8 15.0 27.0 
3 3.13 0.7670 23.2 93.4 94.8 

40 
0 5.42 0.7397 14.4 12.6 16.5 
3 3.83 0.7350 19.3 68.1 51.7 

60 
0 7.13 0.8780 13.0 5.6 17.2 
3 3.49 0.7978 24.8 45.1 50.3 

Average: 
0 4.69 0.8172 19.7 12.9 21.7 
3 3.59 0.7701 22.6 69.8 61.9 

Scenario 3 
(trees) 

5 40 
0 1.81 0.7120 46.5 15.0 33.3 
3 1.15 0.7591 46.6 61.4 74.5 

10 40 
0 1.82 0.5635 38.4 23.6 47.7 
3 2.17 0.6956 31.6 54.4 54.2 

20 40 
0 3.95 0.8615 26.6 10.8 31.8 
3 3.55 1.0690 36.0 62.8 53.3 

Average: 
0 2.53 0.7123 37.1 16.5 37.6 
3 2.29 0.8413 38.1 59.5 60.7 
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10 Annex V: Reference Frame Transformation 
10.1 Attitude correction 

Using three transformation matrices (Eq. 20-22) for all three axes (𝑥𝑥,𝑦𝑦, 𝑧𝑧), the pitch (𝜃𝜃), roll (𝜙𝜙), and 
yaw (𝜓𝜓) angles of the drone will correct the sensor wind measurements for the attitude. 

𝑇𝑇𝑝𝑝(𝜙𝜙) = �
1 0 0
0 cos(𝜙𝜙) − sin(𝜙𝜙)
0 sin(𝜙𝜙) cos(𝜙𝜙)

� (20) 

𝑇𝑇𝑝𝑝(𝜃𝜃) = �
cos(𝜃𝜃) 0 sin(𝜃𝜃)

0 1 0
− sin(𝜃𝜃) 0 cos(𝜃𝜃)

� (21) 

𝑇𝑇𝑝𝑝(𝜓𝜓) = �
cos(𝜓𝜓) − sin(𝜓𝜓) 0
sin(𝜓𝜓) cos(𝜓𝜓) 0

0 0 1
� (22) 

Thereafter, 𝑢𝑢, 𝑣𝑣, and 𝑤𝑤 wind components are obtained from the sensor 𝑤𝑤𝑝𝑝 ,𝑤𝑤𝑝𝑝 , and 𝑤𝑤𝑝𝑝 wind 
measurements using Eq. 23. 

𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝 = �𝑤𝑤𝑝𝑝  𝑤𝑤𝑝𝑝 𝑤𝑤𝑝𝑝� 

𝑊𝑊𝑢𝑢𝑣𝑣𝑤𝑤 = 𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝 ⋅ 𝑇𝑇𝑝𝑝(𝜙𝜙) ⋅ 𝑇𝑇𝑝𝑝(𝜃𝜃) ⋅ 𝑇𝑇𝑝𝑝(𝜓𝜓) 
(23) 

10.2 Motion correction 

𝑢𝑢, 𝑣𝑣, and 𝑤𝑤 wind components will have to be corrected for the motion of the drone, as any movement 
of drones is registered as wind. First, the drone motions in the East, North, and up directions are 
determined by simple trigonometry using the drone’s vertical speed (𝑣𝑣𝑝𝑝), horizontal speed (𝑣𝑣𝑝𝑝𝑝𝑝) and 
course (𝜑𝜑) using Eq. 24. 

𝑣𝑣𝑒𝑒 = 𝑣𝑣𝑝𝑝𝑝𝑝 ⋅ sin(𝜑𝜑) 

𝑣𝑣𝑛𝑛 = 𝑣𝑣𝑝𝑝𝑝𝑝 ⋅ cos(𝜑𝜑) 

𝑣𝑣𝑢𝑢 = 𝑣𝑣𝑝𝑝 

(24) 

The actual wind vectors are then obtained by adding the motion to the measured wind using Eq. 25. 

𝑤𝑤𝑢𝑢 = 𝑤𝑤𝑢𝑢 + 𝑣𝑣𝑒𝑒  

𝑤𝑤𝑣𝑣 = 𝑤𝑤𝑣𝑣 + 𝑣𝑣𝑛𝑛 

𝑤𝑤𝑤𝑤 = 𝑤𝑤𝑤𝑤 + 𝑣𝑣𝑢𝑢 

(25) 
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11 Annex VI: Ordinary Least Squares Regression Analysis 
In brief, an OLS compares the difference between individual points in a data set and the predicted line 
of best fit to measure the amount of error produced (Hashem, 2015). As implied by the name, a linear 
regression model assumes that the relationship between the independent variables and dependent 
variable are linear, as opposed to exponential. In addition, an OLS analysis is extremely sensitive to 
outliers (Wen et al., 2013). For this analysis, the obstacles (categorical), altitudes (numerical), triangle 
sizes (numerical) and average wind speeds (numerical) are considered to model the relationship 
between these independent variables and the dependent wind magnitude and angular errors. 

Table 11: Multivariate OLS regression analysis overview to statistically analyse the effect of wind speed on the 
wind magnitude and angular errors 

Dependent variable Independent variable Coefficient Standard error t p-value 

Vertical angular MAE 

𝑀𝑀𝑑𝑑𝐴𝐴.𝑅𝑅2 = 0.689 

Trailer 6.77 3.62 1.8
7 0.082 

Tree line 12.86 3.70 3.4
7 0.003 

Altitude 0.02 0.06 0.2
8 0.784 

Triangle size 0.16 0.08 2.0
4 0.060 

Wind speed -4.48 1.30 -
3.42 0.004 

Horizontal angular MAE 

𝑀𝑀𝑑𝑑𝐴𝐴.𝑅𝑅2 = 0.233 

Trailer 0.35 4.38 0.0
8 0.937 

Tree line -3.82 4.47 -
0.85 0.406 

Altitude -0.003 0.07 -
0.04 0.986 

Triangle size 0.09 0.10 0.9
3 0.369 

Wind speed -3.58 1.58 -
2.26 0.039 

Wind magnitude MAE 

𝑀𝑀𝑑𝑑𝐴𝐴.𝑅𝑅2 = 0.154 

Trailer 0.05 0.10 0.5
1 0.616 

Tree line 0.05 0.11 0.4
9 0.630 

Altitude -0.002 0.002 -
1.48 0.159 
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Triangle size 0.003 0.002 1.2
6 0.227 

Wind speed 0.04 0.04 1.1
5 0.267 

The results of the OLS analysis are presented in Table 11. For the vertical angular MAE, the adjusted 
R-squared value is 0.689, which indicates that ~69% of the change in the dependent variable is 
explained by the changes of the used independent variables (Hashem, 2015). Cautiously adhering to 
p < 0.05 as a rejection rule of the null hypothesis (Dahiru, 2008), the p-value of 0.004 states that there 
is a 0.4% chance that the wind speed has no effect on the vertical angular error. Therefore, it is very 
likely that the low wind speeds during the experiment day have a significant negative effect on the 
error, where a decrease of 1 m/s in wind speed corresponds to a 4.48° error increase. Despite having 
a low adjusted R-squared value, the average wind speed also seems to have some significance given 
the horizontal angular MAE. In contrast, the independent variables show no statistical significance for 
the 3D wind magnitude MAE. Furthermore, the condition number of the regression analysis is 224. A 
condition number is a measurement of the sensitivity of the model as compared to the size of changes 
in the data it is analysing (Hashem, 2015). Multicollinearity is strongly implied by a condition number 
> 30. Multicollinearity is a term to describe a high degree of intercorrelations among the independent 
variables in a multivariate regression equation (Hashem, 2015). The independent variables might 
interact with each other. By studying the interaction effects of multiple independent variables, it can 
indicate a probable third variable which influences the relationship between an independent and 
dependent variable (Frost, 2021). This would be critical to incorporate in the model, but lies beyond 
this study and could be implemented in future research. 

As mentioned above, a linear regression analysis assumes there is a linear relationship, as opposed to 
an exponential relationship. In addition, an OLS analysis is extremely sensitive to outliers (Wen et al., 
2013). This regression analysis cannot be used as ground truth. Nonetheless, it implies that the 
average wind speed only affects the angular errors. 
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