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1. Abstract 
The objective of this Engage KTN PhD study is to explore and present state of the art AI/ML 
algorithms towards planning conflict-free trajectories in computationally efficient ways, for a large 
number of trajectories in airspaces comprising multiple FIRs, following a methodology combining 
data-driven and agent-based approaches. 
In the context of this study the conflicts-free trajectory planning task is defined to incorporate 
trajectory prediction and conflicts detection and resolution. While trajectory prediction concerns 
predicting the spatiotemporal evolution of the aircraft state along a trajectory (also called, 
trajectory evolution), conflicts detection and resolution concerns the detection of conflicts that 
breach separation minima (loss of separation) between flights and their resolution by appropriate 
actions. Therefore, the objective of the conflicts-free trajectory planning task is to predict the 
evolution of trajectories, and regulating flights to avoid loss of separation. 
While trajectory planning may take place at the pre-tactical phase of operations, we expect the 
methods developed in this study to have a large impact in the tactical phase of operations. 
Aiming to model stakeholders’ decisions to planning conflict-free trajectories, the major emphasis 
of this study is to imitate flights’ trajectories and air traffic controller’s behavior according to 
demonstrations provided by historical data. 
 
The challenges that this study addressed are as follows: 

1. Plan trajectories, considering complex ATM phenomena and operational constraints 
regarding traffic and conflicts among trajectories. 

2. Follow a data-driven approach to learn stakeholders’ preferences on the evolution of 
trajectories and on resolving conflicts: stakeholders include airspace users (for trajectory 
prediction) and air traffic controllers (for conflicts’ detection and resolution actions). 

3. Address optimization in trajectory planning w.r.t. multiple objectives, preferences and 
constraints of stakeholders involved, as these are demonstrated by historical data. 

4. Address scalability: demonstrate the efficiency of the methods to be applied in settings with 
a large number of flights. 

 
Contributions that this study makes are as follows: 

1. The problem of modelling air traffic controllers’ behavior has been split into two well-
defined problems: modelling air traffic controllers’ reactions on whether and when conflicts’ 
resolution actions should be applied, and modelling air traffic controllers’ reactions on how 
conflicts should be resolved, i.e. what resolution actions should be applied. 

2. The problem of trajectory planning (either with or without considering conflicts) has been 
formulated as an imitation learning problem, based on historical flown trajectories. 

3. AI/ML methods have been developed and tested on learning models regarding the evolution 
of 4D trajectories, using data-driven approaches, i.e. based on historical real-world data. 

4.  AI/ML methods have been developed and tested on learning models regarding air traffic 
controllers’ reactions and policy using data-driven approaches, i.e. based on historical real-
world data. 

5. This study has proposed an elaborated evaluation method for data-driven imitation learning 
techniques predicting air traffic controllers’ reactions, considering the uncertainties involved 
in the evolution of trajectories, in the assessment of conflicts, and in the reactions of ATCO. 

6. Challenging issues due to inherent data limitations have been addressed and thoroughly 
discussed. 

7. The study provides an integrated trajectory planning approach, where data-driven trajectory 
predictions are intertwined with data-driven conflicts detection and resolution. 
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2. Objective of the study 
The main objective of this study is the following: 
 
Develop AI/ML methods towards planning conflicts-free trajectories. 
 
This objective is aligned with the Engage thematic challenge 2 “Data-driven trajectory prediction”. 
 
The concrete objectives of this study are as follows: 

A. Develop a formulation of the trajectory planning problem (and subproblems), 
considering prediction of trajectories and resolution of conflicts. 

B. Develop an AI/ML learning method incorporating reinforcement learning for the 
prediction of trajectories per Origin-Destination pair, without explicitly considering 
conflicts. 

C. Develop AI/ML learning methods incorporating reinforcement learning for the resolution 
of conflicts. 

D. Combine AI/ML models for the intertwined prediction of trajectories and the detection 
and resolution of conflicts, towards a method for the planning of conflicts-free 
trajectories. 

 
Methodological objectives towards these main objectives are the following: 
 
1. Gather and process high-quality data sets for data-driven planning of trajectories, revealing 
behavior of airspace users and air traffic controllers in different circumstances. Specifically, 

1.a Specify and gather high-quality data sets for training AI/ML methods towards planning 
conflicts-free trajectories. 

1.b Process and associate data from the different data sets, so as to 
1.b.1 understand the phenomena regarding conflicts and their resolution, as these are 

revealed by the datasets, 
1.b.2 detect data imperfections, resolve challenging issues and address inherent data 

limitations, 
1.b.3 provide AI/ML methods with concrete cases to which they will be trained and tested. 

 
2. Review and compare thoroughly state of the art techniques on 

2.a Data-driven conflict-free trajectory planning (i.e. trajectory prediction and conflicts 
detection and resolution), providing evidence on the novelty and significance of the 
developments in this study. 

2.b AI/ML methods for imitating experts’ policy to perform tasks (in our case, to imitate the 
evolution of flight trajectories and the resolution of conflicts). 

 
3. Formulate and test alternative formulations using state-of-the-art AI/ML methods, regarding 

3.a The behavior of airspace users on executing trajectories per Origin-Destination pair. 
3.b The behavior of air traffic controllers on resolving conflicts. 

 
Contributions that this study aims to make to the ATM Master Plan: 

1. Imitate air traffic controllers to resolve conflicts, supporting better planning of operations 
for Airspace Users. 

2. Improved operations productivity via contributions to improved collaborative planning 
tools accounting for complex phenomena due to traffic. 

3. Increasing predictability via efficient operation plans, reducing buffers and uncertainty. 
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3. Motivation 
Europe has a complex airspace, where 30.000 daily flights usually overfly its sky. Therefore, it is one 
of the airspaces with most activity in the world. While this number is expected to increase 
significantly in the coming years, Air Traffic Management (ATM) needs to handle greater complexity 
and larger volumes of traffic. While ATM in Europe is shifting towards the Trajectory-Based 
Operations (TBOs) paradigm, it aims to rely on 4-D trajectories to increase the efficacy of planning 
at pre-tactical phase (i.e. a few hours to a few days before operation, before the trajectory becomes 
a reference business trajectory (RBT)), and also during the tactical phase (i.e. during operations) 
towards addressing complexity issues. 
 
During the planning phase of operations the airspace users agree with ANSPs, airport operators, the 
airspace user’s preferred trajectory, where the various constraints of airspace and airport capacity 
are fully taken into account. Once agreed, the business trajectory (BT) becomes the Shared Business 
Trajectory (SBT), the trajectory that the airspace user agrees to fly and all the service providers agree 
to facilitate. Exploiting this plan in conjunction to the evolution of the actual trajectory, air traffic 
controllers detect and resolve conflicts during the pre-tactical (as done by the planning controller) 
and the tactical phase (as done by the executive controller) of operations. 
 
The main objective of conflict-free planning of trajectories is to protect the Air Traffic Control (ATC) 
service from overload1, enabling controllers (ATCO) to deal with complex traffic situations. Given 
the uncertainties during the planning phase, as well as while executing a plan, reliable planning of 
conflict-free trajectories is not that straightforward. While the transition to TBOs will progressively 
improve availability of information, our aim is to increase accuracy for trajectory planning and 
execution, providing great benefits to the ATM system, mainly in terms of predictability, which is 
the main driver for improvement in other KPAs, such as capacity. 
In addition to the above, while planning of flight trajectories involves multiple stakeholders 
(Airspace Users (AUs), Air Navigation Service Providers (ANSPs), Network Manager (NM), Airport 
Operators (AOs)), planning of conflict-free trajectories also brings the preferences/best practices of 
Air Traffic Controllers in perform of their duties. 
Based on the above, this study is motivated to present methods for the planning of conflict-free 
trajectories, either at the pre-tactical phase towards an SBT, or at the tactical phase of operations, 
incorporating into the process preferences/practices and constraints of stakeholders (mainly, air 
space users and air traffic controllers), building models that are close to their objectives and their 
behavior, as these are revealed by historical data on executing flight trajectories and resolving 
conflicts. 
Following an agent-based approach, this study targets towards addressing complex phenomena 
occurring due to traffic, thus, resolving co-occurring conflicts simultaneously, dealing with the 
effects of conflicts’ resolutions applied, w.r.t. stakeholders’ preferences and interests, as well as 
w.r.t. operational constraints. 
By doing so, this study contributes towards collaborative decision making by imitating conflict-free 
trajectory planning (i.e. trajectory prediction and conflicts detection and resolution), accounting for 
complex phenomena due to traffic, increasing predictability via efficient operation plans, reducing 
buffers and uncertainty as much as possible, and reducing flight inefficiencies due to tactical ATC 
actions, supporting better planning of operations for Airspace Users. 

 
1 University of Westminster; Eurocontrol, ‘European airline delay cost reference values’, p. 86, 2011. 
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4. Advances this work has provided with regard to the state of the art 
Given that the main objective of this study is to develop AI/ML methods towards planning conflicts-
free trajectories, the main contribution is the development of data-driven AI/ML models for (a) the 
prediction of trajectories, (b) the resolution of conflicts among flights, as well as (c) the combination 
of such models towards devising a method for planning conflict free trajectories. 
 
To achieve this main objective, this study advances the state of the art in three major and 
challenging topics: 
 
Develop an AI/ML learning method incorporating reinforcement learning for the prediction of 
trajectories per Origin-Destination pair, without explicitly considering conflicts. 
 
Specifically, this study has formulated the trajectory prediction problem as a data-driven imitation 
learning problem and developed imitation learning algorithms for learning trajectory prediction 
models for different origin destination pairs. The study reports on extensive experimental results 
regarding the efficacy of these models. 
 
Specific, major contributions made are as follows: 
 

• The trajectory prediction problem has been formulated as an imitation learning process, 
where models of trajectories are learnt from historical trajectories provided as “expert" 
demonstrations, considering that these trajectories have been “shaped" by aggregating 
stakeholders' policies, preferences and objectives: This, in synergy with the Engage KTN 
Catalyst Project on Data-driven Trajectory Imitation with Reinforcement, is the first work 
that has done so (as far as we know). 

• State of the art imitation learning methods have been studied, towards learning trajectory 
models without making any assumption on the form of a cost function, in continuous state-
action spaces, with no specific requirements on specifying trajectory constraints (e.g. 
without requiring information on flight plans), and with minimal data pre-processing 
requirements. 

• Extensive experimental results are provided that concern trajectories between Origin-
Destination (OD) airports' pairs with different characteristics, demonstrating the prediction 
abilities of the method, either at the pre-tactical or at the tactical stage of operations. 

 
Develop an AI/ML method incorporating reinforcement learning for the detection and resolution 
of conflicts. 
 
This study contributes to conflict detection and resolution (CD&R) tasks executed as part of the Air 
Traffic Control (ATC) service, promoting safe, orderly and expeditious flow of air traffic, by modelling 
Air Traffic Controllers' (ATCO) behavior in resolving conflicts using data-driven AI/ML techniques. In 
general, according to the problem specifications made in this study, this implies learning “when” 
the ATCO will react to resolve a detected conflict, and “how” he/she will react: The first is the ATCO 
reaction problem specifying “whether” and “when” the ATCO will react , while the second is the 
problem of learning the ATCO policy, specifying “how” he/she will react in the presence of conflicts. 
 
The specific contributions made towards the ATCO reaction problem are as follows: 

• The problem of CD&R has been formulated as an imitation learning problem, aiming to learn 
ATCO behavior in a hierarchical manner. In so doing, ATCO reaction prediction problem is 
formulated. 
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• A supervised deep learning method employing a Variational Auto-Encoder (VAE) for 
predicting ATCO reactions has been devised, in the context of a methodology to model 
ATCOs behavior; 

• A data-driven method for simulating the uncertainty in the evolution of trajectories and for 
detecting the potential conflicts that may have triggered ATCOs reactions (this is a 
challenging issue due to inherent data sources limitations), has been proposed; 

• A methodology for evaluating data-driven methods to resolve the ATCO reaction problem 
has been devised, taking into account uncertainties involved in the process; 

• The proposed method has been evaluated comparatively with baseline methods towards 
modelling ATCOs reactions, using real world data. 
 

Regarding the problem of learning the ATCO policy, the contributions made towards this objective 
are as follows: 

• The problem of learning the ATCO policy has been formulated as an episodic, single-stage 
imitation learning problem and as a classification task (alternatively), aiming to learn the 
actual ATCO behavior, as it is revealed in historical data. 

• Supervised machine learning methods for predicting the ATCO actions have been devised in 
the context of the overall methodology to model ATCO: These methods include (a) a single 
stage episodic imitation learning method based on the Generative Adversarial Imitation 
Learning (GAIL), and (b) classification methods using a neural network, random forests, 
gradient boosting and support vector machines. 

• The proposed methods have been evaluated comparatively towards modelling ATCO 
behavior, using real world data. 
 

As far as we know, this is the first study towards modelling ATCO behavior and ATCO reactions in a 
data-driven way. Indeed, most of the CD&R approaches are trained, validated and tested in 
simulated settings, where agents (flights) learn autonomously while acting in their environment, 
without considering actual ATCO behavior. We conjecture that in safety critical domains such as 
ATC, the actions proposed by automated systems should be “similar” to those taken by humans: By 
“similar” we mean with a short distance in any of the temporal, spatial dimensions at which actions 
are decided and applied along the trajectory, as well as with strong similarity to conflict resolution 
actions performed by ATCO. This implies safety in the automation process, taking into account 
human expertise, (human-like) flexibility and tolerance in reacting to situations. We believe that 
such an approach, is capable of developing trust to an automated system: Actions that are close to 
the human rationale are more understandable or self-explanatory to human operators, and the 
system objectives can be made intuitively transparent, given that the system models the ATCO 
objectives and preferences. Although this does not imply lack of need for 
explainability/transparency of AI/ML methods, the provision of explanations is out of this study 
scope. 
 
Indeed, data-driven techniques for conflict resolution have the potential to reveal and incorporate 
in the decision-making process the preferred behavior of the various stakeholders, as this 
information lies implicit in the demonstrated historical data, and is being represented in a machine-
crafted model, learnt by exploiting the appropriate data sources. 
 
A challenging issue of such a data-driven imitation process, as experienced by this study, is that 
historical expert samples (i.e. flown trajectories annotated with ATCO resolution actions) do not 
indicate, together with the resolution actions, the observations perceived by ATCOs before the 
resolution action, driving the specific action. Such observations include features concerning the 
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evolution of the trajectories perceived/assessed by the ATCO before their “intervention”, the 
features of conflicts assessed, as well as the evolution of conflicts after the instruction of a resolution 
action. However, historical data sets indicate in the best case the effect of ATCO resolution actions, 
but neither the potential evolution of the trajectories before the resolution action, nor how 
trajectories would evolve if the ATCO resolution action had not been applied. This is a challenging 
issue in the learning process, since imitating the “when” and “how” of the ATCO behavior 
necessitates recovering the specific state, and the important observations that the ATCO perceived 
or predicted, driving decisions. Neither of this information is provided in historical data (data 
provide only the action type instructed). To reveal such details from historical data is not a trivial 
task as the evolution of the trajectories is uncertain. 
This study deals with this challenging problem to a large extent. 
 
Develop an AI/ML method for planning conflict-free trajectories. 
 
Addressing this challenge involves combining models for ATCOs behavior for resolving conflicts with 
models of predicting trajectories, into a single method for planning conflict-free trajectories. 
In this context, we advance the trajectory prediction problem formulated as an imitation learning 
problem to take into account models of ATCO behavior in resolving conflicts. 
Results from experiments on trajectories among different OD pairs in Europe, aim to show the 
effectiveness and efficiency of the overall approach and show its effectiveness in terms of accuracy 
of predictions. 
 
The specific contributions (this is still in progress when publicizing this report) towards this objective 
are as follows: 

• Enhance the imitation learning method for predicting trajectories without considering 
conflicts, to a conflict-free trajectory planning framework, where models of ATCO behavior 
are incorporated to predict the evolution of trajectories while resolving conflicts. 

• The data-driven framework for conflicts-free trajectory planning is generic, being able to 
incorporate different trajectory prediction and ATC behavior models. 

• Different instantiations of the proposed framework are evaluated comparatively, using real 
world data.
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5. Methodology 
The overall methodology to address the objectives of this study, whose structure in terms of work-
packages is shown in Figure 1, comprises the following steps: 
 
Step 1: Develop an AI/ML learning method incorporating reinforcement learning for the 
prediction of trajectories per Origin-Destination pair, without explicitly considering conflicts. 
 
Specifically, this step formulates the trajectory prediction problem as a data-driven imitation 
learning problem. Aiming to imitate the experts “shaping/evolving" trajectories, this study devises 
AI/ML methods that learn policy models incorporating preferences, strategies, practices etc. in an 
aggregated way, as revealed by historical data. 
 In this context, the trajectory prediction problem has been formulated as an imitation learning 
problem and the Generative Adversarial Imitation Learning (GAIL) state of the art imitation learning 
method has been selected to learn the models.  
To evaluate the effectiveness and efficiency of the approach, experiments on trajectories among 
different OD pairs report on the following measures regarding the accuracy of the predictions: (a) 
Root Mean Square Error (RMSE) in meters in each of the 3 dimensions, as well as in 3D, (b) Along-
Track Error (ATE), (c) Cross-Track Error (CTE), and (d) Vertical deviation (V), between predicted and 
historical trajectories. 
Results show the effectiveness and efficiency of this approach, and show that GAIL can be effective 
(in terms of accuracy of predictions) even with a small number of historical trajectories, able to 
provide accurate long-term predictions, compared to state of the art trajectory prediction 
approaches. 
 
Step 2: Develop an AI/ML method incorporating reinforcement learning for the detection and 
resolution of conflicts. 
 
This step models the Air Traffic Controllers' (ATCO) behavior in resolving conflicts using data-driven 
AI/ML techniques. In general, according to the problem specifications made in this study, this 
implies learning “when” the ATCO will react to resolve a detected conflict, and “how” he/she will 
react. Timely reactions, focus on “whether” and “when” do reactions happen as the trajectory 
evolves, aiming to predict the trajectory points that the ATCO issues a conflict resolution action. 
 
More specifically, towards this goal, this study proposes a two-stages data-driven methodology 
towards meeting the following two objectives: 
 

1. Formulate the ATCO reaction prediction problem, towards building a model of ATCO 
reactions for resolving conflicts. The aim is to answer “whether” and “when” the ATCO 
decides to apply an action to resolve a conflict. Towards predicting the ATCO timely reactions 
to resolve conflicts, this study trains a Variational Autoencoder (VAE) imitating the 
demonstrated ATCO policy in a supervised way. The proposed method has been evaluated 
in two different operational settings (sector-related and sector-ignorant), reporting on the 
precision, recall and f1-score of predictions. A weighted version of these measures is 
introduced, to deal with the inherent uncertainties regarding (a) the evolution of 
trajectories, (b) the detection of conflicts (which are not specified in the dataset), and (c) the 
ATCO reaction. 
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2. Formulate the ATCO policy modelling problem, towards building a model of ATCO behavior 
for resolving conflicts. The aim is to answer “how” the ATCO reacts (i.e. what resolution 
actions he/she applies) in the presence of conflicts. Towards predicting the ATCO policy, 
thus, predicting the resolution action the ATCO prescribes in case that he/she reacts in a 
potential detected conflict, this study evaluates comparatively (a) an imitation learning 
method based on the Generative Adversarial Imitation Learning (GAIL) framework, and (b) 
classification methods using neural networks (NN), random forest (RF), gradient boosting 
(GB), and support vector machines (SVM). To evaluate the different methods we report the 
precision, recall, f1-score and the Matthews Correlation Coefficient between the predictions 
and the resolution actions of the dataset. 

 
Step 3: Develop an AI/ML method for planning conflict-free trajectories. 
 
This step combines the models for ATCO behavior for resolving conflicts with models of predicting 
trajectories, into a single method for planning conflict-free trajectories. To do so, it proposes an 
integrated framework that incorporates models trained for predicting ATCO reactions, models of 
ATCO policy, and trajectory models learnt from GAIL without considering conflicts. 
Results from experiments on trajectories among different OD pairs in Europe, aim to show the 
efficiency of the overall approach and its effectiveness in terms of accuracy of predictions. We do 
so by comparing results from the overall conflicts-free trajectory prediction method to the results 
from training GAIL without considering conflicts and the application of resolution actions. 
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 Year 1 Year 2 Year 3 
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 
WP 1 Data Management                                                 
Task 1.1 Data Gathering and Definition                                                     
Task 1.2 Data Management                                                 
Deliverables            ▲                         
Milestones      MS1                               
WP 2 State of the Art             
Task 2.1 State of the art on Trajectory Planning for Conflict-free Trajectories             
Task 2.2 State of the art on Reinforcement Learning with Spatiotemporal abstractions             
Deliverables                              ▲       
Milestones      MS2                               
WP 3       Data Driven Models                                 
Task 3.1       Data Driven Trajectories Model                                     

Task 3.2           Data Driven Conflict Resolution Model                                 

Deliverables                        ▲             
Milestones                  MS4      MS5             
WP 4       Planning of Trajectories 
Task 4.1       Formal Specification of the Problem                                     
Task 4.2               Reinforcement Learning for Trajectories Planning                         
Task 4.3                       Reinforcement Learning for Planning Conflicts-free Trajectories  
Deliverables                                    ▲ 
Milestones            MS3            MS6            MS7 
WP 5 PhD Supervision, Dissemination and Management of Resources 
Task 5.1 PhD Supervision 
Task 5.2 Dissemination activities 
Task 5.3 Management of resources 
Deliverables      ▲      ▲      ▲      ▲      ▲      ▲ 

Figure 1 Gantt chart: Original plan (in blue) and revisions made (in gray). 
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6. Description of the data the study relies on 
The methodology proposed in this study exploits data from the Spanish airspace, 
considering flights over Spain, without sacrificing the generality of the methods introduced. 
The data sources comprise: 

• Surveillance data: operational quality data with actual flights (raw) trajectories 
(Spanish ATC Platform SACTA) 

• Flight plan data: all flight plan updates for any given flight, since flight plan creation, 
allowing continuous snapshots (Spanish ATC Platform SACTA) 

• Sector configuration data: the schedule of deployed sector configurations, as well as 
the catalog of possible sector configurations (Spanish ATC Platform SACTA) 

• Weather data: weather forecast information regarding the area corresponding to the 
trajectories considered (provided by the National Oceanic and Atmospheric 
Administration (NOAA) platform) 

• Aircraft identification data: provides specific information on the aircraft flying a 
particular trajectory. (World Aircraft Database and ICAO Doc86432) 

• ATCO events: provides actions taken by the Air Traffic Controllers in order to ensure 
safety of flights (provided by Automated NORVASE Takes (ATON)). 

 
In the following sections we describe the datasets in more detail and also their spatial and 
temporal coverage. 
 
Surveillance data 
This data set provides radar tracks of the Spanish airspace controlled by the Spanish ATC 
provider ENAIRE. A radar track is reported in tabular form, with a timestamp key and 
geospatial information. Tracks are updated with an interval of 5 seconds. The spatial area 
coverage of the data is the whole Spanish airspace. The temporal coverage of the data 
includes the years 2016, 2017, 2018. For this study we have used radar tracks over the Iberian 
Peninsula for the year 2017. The AI/ML methods have been trained using trajectories 
between 5 different origin destination pairs Malaga (LEMG) - Gatwick (EGKK), Malaga (LEMG) 
- Amsterdam (EHAM), Lisbon (LPPT) - Paris (LFPO), Zurich (LSZH) - Lisbon (LPPT) and 
Geneva (LSGG) - Lisbon (LPPT). 
In addition, we consider only trajectories that have at least one ATCO resolution action 
corresponding to a detected conflict. This results to 668 trajectories from 2017. 
 
In addition to these datasets, for the purposes of evaluating trajectory imitation methods we 
exploited (a) radar tracks between 3 OD pairs: Barcelona to Madrid (BCN-MAD) during July 
2019 (308 trajectories), London Heathrow to Rome Fiumicino (LHR-FCO) during July 2019 (219 
trajectories), and Helsinki to Lisbon (HEL-LIS) during July 2019 (44 trajectories). 
 
Flight Plan data 
The Flight Plan data set is essential for the aviation domain, as it contains information that 
triggers a lot of operational decisions, both in the planning and execution phases. The data 
source that provides the data is a subsystem of the Spanish ATC platform (GIPV, Flight Plan 
Information Management System). The GIPV is a Flight Plan Report Manager Subsystem that 

 
2 See also https://www.icao.int/publications/DOC8643/Pages/default.aspx 

https://www.icao.int/publications/DOC8643/Pages/default.aspx
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contains information about flight plans that are being flown or going to be flown soon (to 15 
hours), in the part of the airspace that is being operated under the responsibility of the Flight 
Plan Central Treatment. The spatial area coverage of the data is the whole Spanish airspace. 
The temporal coverage of the data includes the years 2016, 2017, 2018. 
For this study we have used radar tracks over the Iberian Peninsula for the year 2017. 
 
Sector Configuration Data 
The Airspace data set describes the existing airspace organization, with no gaps or overlaps, 
and all the possible ways of combining volumes to generate different operational sector 
configurations. This data set describes the schedule of sector configurations that have been 
effectively put in place in Spanish airspace. The temporal coverage of the data includes the 
years 2016, 2017, 2018. 
For this study we have used radar tracks over the Iberian Peninsula for 2017. 
 
Weather Data 
This data set provides the forecast of the weather conditions, at the position of an aircraft at 
any given time during its flight. Specifically, for each 4D position (latitude, longitude, altitude 
and time) it reports the values of the weather variables describing the weather conditions at 
that position. The most frequently used variables in the aviation domain, are the 
Temperature, the Pressure, and the two horizontal components of the Wind Speed, u and v. 
The available data cover the Iberian Peninsula and Canary Islands for the whole 2016 and July 
2019. 
 
For the purposes of evaluating trajectory imitation methods we have used weather data 
obtained from National Oceanic and Atmospheric Administration (NOAA) for 2019. 
 
Aircraft Identification and Models 
For the identification of aircraft reported in surveillance data set, the World Aircraft Database 
is exploited3. This data set provides specific information on the aircraft flying a particular 
trajectory (thus enriching the information available in the surveillance and flight plans data 
sets). 
 
ATCO Events Dataset 
As ATCO events we consider regulations assigned by the air traffic controllers to flights, in 
order to ensure that the minimum separation minima are not violated, and thus, aircraft fly 
safely. An ATCO event contains information about the callsign of the regulated flight, the 
origin airport, the destination airport, the timestamp of the event, the type of the event and 
the sector in which the event took place. This dataset is in .csv format and contains regulations 
assigned by the Air Traffic Controllers to flights that pass over the Spanish FIR. It contains 
several types of events made by the controller from which we consider as relevant to the 
conflict resolution problem the following: 
• Flight level clearance due to traffic 
• Speed adjustment due to traffic 
• Direct to waypoint clearance due to traffic 

 
3 Sun, J. (2017). World Aircraft Database [Data file]. Retrieved from http://junzis.com/adb 

http://junzis.com/adb
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The spatial area coverage of the data is the whole Spanish airspace. The temporal coverage 
of the data includes the years 2017, 2018. 
 
For this study we exploit ATCO events over the Iberian Peninsula for the year 2017. 
 

7. Computational experiments 
This section is divided in three subsections, each for the different major objectives addressed. 
 
7.1. Prediction of trajectories per Origin-Destination pair, without explicitly 
considering conflicts. 
To predict aircraft trajectories via imitation learning, this study uses the Generative 
Adversarial Imitation Learning (GAIL) imitation learning framework. GAIL employs a 
generative trajectory model G that models the trajectory-evolution policy of the aircraft and 
a discriminative classifier D that distinguishes between the distribution of state-action pairs 
generated by the policy and the demonstrated data. Both the policy and D are represented 
by function approximators with weights θ and w, respectively. Following the implementation 
described in [1], GAIL alternates between an Adam [2] gradient step on w to increase the GAIL 
objective function with respect to D, and a step on θ using the Trust Region Policy 
Optimization (TRPO) algorithm [3] to decrease the objective function with respect to the 
policy. 
The input for G corresponds to the position and temporal variables per aircraft state, and 
other variables enriching a trajectory state (specified below). D takes as additional input the 
three action variables. 
G has a dense output layer with size equal to the number of action variables, while the output 
layer of D has one node. 
 
Datasets exploited in experiments for imitating trajectories include (a) radar tracks for flights 
between 3 OD pairs: Barcelona to Madrid (BCN-MAD) during July 2019 (308 trajectories), 
London Heathrow to Rome Fiumicino (LHR-FCO) during July 2019 (219 trajectories), and 
Helsinki to Lisbon (HEL-LIS) during July 2019 (44 trajectories); (b) weather data obtained from 
National Oceanic and Atmospheric Administration (NOAA); and (c) aircraft models' ids. 
 
Trajectories in these datasets have been pre-processed, cleaned and enriched with five (5) 
numerical variables corresponding to 4 meteorological features at any trajectory state 
position and time, provided by NOAA, and the aircraft model of each trajectory. The NOAA 
features are temperature, geopotential height, u-component of wind, v-component of wind. 
 
The prediction accuracy is measured at the pre-tactical phase (starting from a position in the 
origin airport) and at the tactical phase (starting from any point en-route), introducing a 
parameter M in {0,0.2, 0.5, 0.7}. M determines the initial state of the prediction, i.e. the state 
in the actual trajectory after (M x FlightDuration) minutes, starting from t0. 
 
Results report on the trajectory prediction accuracy using the following measures: (a) Root 
Mean Square Error (RMSE) in meters in each of the 3 dimensions, as well as in 3D, (b) Along-
Track Error (ATE), (c) Cross-Track Error (CTE), and (d) Vertical deviation (V). ATE and CTE are 
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computed according to the methodology proposed in [4]. The along track error is measured 
parallel to the predicted trajectory, while the cross track error is measured perpendicular to 
the predicted course. V measures the difference in altitude between the predicted and the 
corresponding test (actual) trajectory. 
Finally, results report on the estimated time of arrival (ETA) error, given the predicted ETA 
and the arrival time of test trajectories. All errors ATE, CTE, V and ETA are signed errors, but 
results reported use their absolute values in order to report on average scores from multiple 
experiments, providing a clear indication of the errors. 
 
The RMSE error is computed for each predicted trajectory point after computing its 
corresponding point in the test trajectory using the Dynamic Time Warping (DTW) method. 
 
Specifically, results report on the average of RMSE for the longitude, latitude and all three 
dimensions (3D), as well as the average of ATE, CTE, V and ETA reported by 20 independent 
experiments per experimental case. 
The division of the historical trajectories for training and testing purposes is done randomly 
for each of the individual experiments using 90% of them as expert trajectories and 10% as 
test trajectories. 
 
7.2. Develop an AI/ML learning method incorporating reinforcement learning for the 
resolution of conflicts. 
 
7.2.1 Model ATCO reactions 
Towards predicting the ATCO’s timely reactions to resolve conflicts, this study trains a 
Variational Autoencoder (VAE) imitating the demonstrated ATCO policy in a supervised way. 
Modes of behavior (corresponding to answering the question “whether” the ATCO reacts in 
every trajectory state) are decided by the encoder and exploited by the policy (modelling the 
actual resolution action the ATCO prescribes), which is represented by the decoder network 
and prescribes sequences of conflict resolution actions. However, the emphasis here in on 
building a model of ATCO reactions, rather than a model of ATCO policy (addressed 
subsequently). 
 
The encoder and decoder networks are trained jointly by exploiting enriched trajectory 
points, the associated ATCO reaction modes and ATCO resolution actions. The errors 
regarding the predicted actions propagate backwards from the decoder. The encoder aims to 
minimize the categorical cross entropy loss between the distribution of modes in the dataset 
and the distribution predicted by the encoder. 
 
To train the VAE for the continuous low-level actions, the Mean Squared Error (MSE) is 
minimized, and for the categorical actions the categorical cross entropy between the 
distribution of actions in the data set and the distribution of the decoder predictions, is 
minimized. 
 
The proposed method is evaluated in two different types of settings w.r.t. the area of 
responsibility (AoR) chosen: a) The sector-related and b) the sector-ignorant settings. 
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In the sector-related case the area of responsibility (AoR) corresponds to a sector crossed by 
the trajectory of the ownship. Neighboring flights are all flights in AoR with a (predicted) 
conflict to the ownship. In the sector-ignorant case a flight-centric setting is simulated, 
ignoring sectors, considering a wide area covering the Iberian Peninsula, and assessing 
conflicts independently from any specific sector. 
 
The trajectory points for all historical trajectories have been annotated using the modes C0 
(“No conflicts detected, and no resolution action has been applied”), C1 (“At least one conflict 
is detected, and a resolution action has been applied”), and C2 (“At least one conflict is 
detected but no resolution action has been applied”). 
 
The dataset contains trajectories between 5 different origin-destination pairs, all from 2017: 
Malaga (LEMG) - Gatwick (EGKK), Malaga (LEMG) - Amsterdam (EHAM), Lisbon (LPPT) - 
Paris (LFPO), Zurich (LSZH) - Lisbon (LPPT) and Geneva (LSGG) - Lisbon (LPPT). We study only 
ATCO resolution actions issued at the en-route phase of operations and filter out the climb 
and descent parts of the trajectories. In addition, we consider only trajectories that have at 
least one ATCO resolution action corresponding to a detected conflict. This results to 255 
enriched trajectories corresponding to 344 resolution actions for the sector relevant case and 
668 trajectories corresponding to 791 resolution actions for the sector-ignorant case. It must 
be noted here that the available ATCO events dataset covers the Spanish airspace and thus 
we consider the points of the trajectories that are in this airspace. However, the proposed 
method is generic, goes beyond sectors, as we show in the sector-ignorant case, and can be 
applied in any airspace. 
 
To deal with the inherent uncertainties regarding (a) the evolution of trajectories, (b) the 
detection of conflicts (which are not specified in the dataset), and (c) the actual ATCO 
reaction, we have devised an evaluation method for data-driven reaction prediction methods, 
introducing a weighted variation of precision, recall and f1-score. 
 
7.2.2 Model ATCO decisions on resolution actions 
Towards predicting the ATCO policy, thus, predicting the resolution action the ATCO 
prescribes in case that he/she reacts in a potential detected conflict, this study evaluates 
comparatively (a) an imitation learning method based on the Generative Adversarial Imitation 
Learning (GAIL) framework, and (b) classification methods using neural networks (NN), 
random forest (RF), gradient boosting (GB), and support vector machines (SVM). 
 
While the GAIL objective here is to learn a model of the ATCO policy (i.e. the mapping of the 
particular conflicts detected to the resolution action types), the imitation learning process is 
a single-stage prediction: I.e. GAIL learns to imitate the ATCO only for the particular states 
where conflicts are detected. No particular trajectory (i.e. sequences of states-actions) is 
generated by the GAIL generator G, although the discriminator takes into account the 
evolution of the conflicts depending on the resolution action prescribed. In doing so, the 
method learns to predict the resolution actions so as the trajectory to evolve according to the 
demonstrated conflict-free trajectories. 
 
Alternatively, the classification methods, learn the ATCO policy in a supervised way, classifying 
states with conflicts to resolution actions, according to the historical data. 
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The dataset contains the trajectories between the 5 different origin-destination pairs, all from 
2017, considered previously on modelling ATCO reactions: Malaga (LEMG) - Gatwick (EGKK), 
Malaga (LEMG) - Amsterdam (EHAM), Lisbon (LPPT) - Paris (LFPO), Zurich (LSZH) - 
Lisbon (LPPT) and Geneva (LSGG) - Lisbon (LPPT). We study only ATCO resolution actions 
issued at the en-route phase of operations and filter out the climb and descent parts of the 
trajectories. In addition, we consider only trajectories that have at least one ATCO resolution 
action corresponding to a detected conflict. We consider the sector ignorant case as this is 
the most general case. The dataset comprises 635 trajectories corresponding to 722 
resolution actions. It must be noted here that the available ATCO events dataset covers the 
Spanish airspace and thus we consider the points of the trajectories that are in this airspace. 
However, the proposed method is generic, does not consider specific sectors, and can be 
applied in any airspace. 
 
7.3. Develop an AI/ML method for planning conflict-free trajectories. 
The proposed framework for planning conflicts-free trajectories in a data-driven way is 
depicted in Figure 2. 
 
This framework incorporates models of ATCO behavior and models for the prediction of 
trajectories. Currently, this framework is being instantiated by models trained for predicting 
ATCO reactions, models of ATCO policy, and trajectory models learnt from GAIL without 
considering conflicts. 
In particular, the “Reaction prediction model” predicts the mode of ATCO reactions at every 
trajectory point, and in any case (i.e. when a conflict is detected, and when no conflict is 
detected). This is a model trained according to Section 7.2.1, and whose output is used by the 
“resolution actions prediction model”. 
Specifically, this later model takes as input the state including features of the detected 
conflicts and prescribes the type of resolution action (if any) to be applied. This is a model 
trained as described in Section 7.2.2. Its output is being used by the trajectory prediction 
module to predict the aircraft state evolution in 4D, taking into account the potential 
resolution action instructed. 
 
In so doing, the overall method models trajectories according to historical data, to predict 
conflicts-free trajectories, while it incorporates data-driven models that predict ATCO 
behavior, according to historical data. 
 
GAIL, as it has been originally designed, employs a generative trajectory model G that models 
the trajectory-evolution policy of the aircraft and a discriminative classifier D that 
distinguishes between the distribution of state-action pairs generated by the policy and the 
demonstrated data. 
Both, the generator G and the discriminator D have been trained to model trajectories 
according to demonstrated trajectories, as discussed in Section 7.1. However, here G rolls-
out trajectories taking into account the resolution action type prescribed. Historical 
trajectories (expert data) have been annotated with the ATC resolution actions and 
demonstrate the course of the flight after the application of the prescribed resolution action. 
The objective of GAIL here is to learn to imitate the flown trajectories w.r.t. the resolution 
action prescribed. 
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Any of these three models, can be replaced by others, given that the functional requirements 
(input/output specifications) are satisfied. For instance, the resolution actions prediction 
model may be the one constructed via imitation learning in 7.2.2, or via the classification task 
using a neural network. Both of these options will be tested in the experimental study of the 
method. 

 
Figure 2 AI/ML framework for planning conflict-free trajectories. 

The evaluation dataset contains the trajectories between the 5 different origin-destination 
pairs, all from 2017, considered previously on modelling ATCO reactions: Malaga (LEMG) - 
Gatwick (EGKK), Malaga (LEMG) - Amsterdam (EHAM), Lisbon (LPPT) - Paris (LFPO), 
Zurich (LSZH) - Lisbon (LPPT) and Geneva (LSGG) - Lisbon (LPPT). It includes only trajectories 
with ATCO resolution actions issued at the en-route phase of operations, and the climb and 
descent parts of the trajectories have been filtered out. In addition, we consider only 
trajectories that have at least one ATCO resolution action corresponding to a detected 
conflict. It must be noted here that the available ATCO events dataset covers the Spanish 
airspace and thus we consider the points of the trajectories that are in this airspace. 
Results report on the trajectory prediction accuracy using the following measures: (a) Root 
Mean Square Error (RMSE) in meters in each of the 3 dimensions, as well as in 3D, (b) Along-
Track Error (ATE), (c) Cross-Track Error (CTE), and (d) Vertical deviation (V). V measures the 
difference in altitude between the predicted and the corresponding test (actual) trajectory. 
All measures are computed using the methodology used for evaluating trajectory prediction 
without considering conflicts (Section 7.1). 
 
Results from the overall conflicts-free trajectory prediction method are compared to the 
results from training GAIL without considering conflicts and resolution actions prescribed. 

8. Results 
 
8.1. Prediction of trajectories per Origin-Destination pair, without explicitly 
considering conflicts. 
Table 1 shows the average RMSE error of the predicted vs the actual (test) trajectory in 
meters, for each of the three dimensions and in 3D, together with the average absolute ATE, 
CTE, and VE, in meters. It also reports the average error of the expected arrival time (ETA) in 
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seconds for each case. The table is split to parts corresponding to the different origin 
destination pairs examined, starting from the short trajectories and going into the longer ones 
with fewer samples, and for each pair the table reports the results for different values of M 
(showing the percentage of the trajectory towards the destination airport). 
 

Table 1 Prediction Errors (in meters) and ETA (in seconds). 

 
 

Figures in Table 2 show box plots for all the measures. The x axis specifies the error measured. 
Horizontal lines of each box plot represent the 25th, the 50th, the 75th and the 100th percentile. 
Dots indicate outliers and the numbers indicate the medians. The left column provides RMSE 
and the right the along-track and cross-track errors. These box plots correspond to the cases 
where M=0. 
 
Not surprisingly, the GAIL method provides consistently better results compared to the 
Behavioral Cloning (BC) baseline: BC minimizes the Mean Square Error between 
demonstrated actions and the policy actions, over the training set. Indeed, Table 2 shows that 
GAIL reports smaller errors with narrower deviations, and very small number of outliers 
compared to BC. In addition to that, low deviations of predicted from the actual trajectories, 
compared to state of the art methods provide evidence of the imitation learning approach 
efficacy, even in very long trajectories spanning the European continent and with few training 
examples. 
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Table 2 Prediction Errors box plots: Numbers below the boxes indicate the medians. 

 
 
8.2. Develop an AI/ML learning method incorporating reinforcement learning for the 
resolution of conflicts. 
 
8.2.1 Model ATCO reactions 
Subsequent paragraphs succinctly report on the results achieved by the VAE model for 
modelling ATCO reactions. These are compared to the results achieved by training only the 
encoder network of VAE (baseline). This shows the difference in performance between the 
two methods, caused by the effects of decoder's error backwards propagation in VAE. 
To evaluate the VAE and the baseline method we have performed 10 experiments with two 
times repeated 5-fold cross validation, training the models for 1000 epochs at each 
experiment. 
Results report the 95% confidence interval (CI) of the non-weighted precision, recall and f1-
score, in conjunction to the weighted versions of these measures, as proposed by this study. 
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Specifically, Table 3 reports the 95% confidence interval for the precision, recall and f1-score, 
achieved by the VAE and the Encoder (Enc) for the ATCO modes of behavior and the resolution 
actions, for the sector-ignorant case. Columns “modes non-weighted”/ “actions non-
weighted" and “modes weighted” / “actions weighted” report respectively on the non-
weighted and the weighted versions of the measures for modes and resolution actions. As 
the encoder does not predict resolution actions, corresponding columns in the second row 
are empty. 
 
Table 3 Experimental Results of the sector-ignorant case achieved by the VAE and the Encoder (Enc). Columns report the 95% 
confidence interval of precision, recall and f1-score w.r.t. the modes and the resolution actions of ATCO, for the non-weighted 
and weighted measures. 

 
Results for the prediction of ATCO resolution actions are not so good as those achieved on 
the prediction of modes (i.e. the prediction of ATCO reactions that this objective aims). The 
prediction of ATCO resolution actions are further explored in addressing the subsequent PhD 
study objective (shown in the next subsection). 
 
Similarly to the above, Table 4 reports the 95% confidence interval of the non-weighted and 
weighted versions of precision, recall and f1-score, achieved by the VAE and the Encoder (Enc) 
for the ATCO modes and the resolution actions, for the sector-related case. The structure of 
the table is similar to that of Table 3. 
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Table 4 Experimental Results of the sector-related case achieved by the VAE and the Encoder (Enc). Columns report the 95% 
confidence interval of precision, recall and f1-score w.r.t. the modes and the resolution actions of ATCO, for the non-weighted 
and weighted measures. 

 
 
8.2.2 Model ATCO decisions on resolution actions 
To evaluate the effectiveness of the AI/ML methods in predicting the type of the ATCO's 
resolution actions we report the precision, recall and f1-score for resolution actions types, A1 

(speed change) and A2 (direct to waypoint) and also the Matthews Correlation Coefficient 
(mcc). Considering the true and predicted classes as two random variables, the mcc is the 
correlation coefficient between these random variables with values in [-1, 1], with 1 indicating 
a perfect prediction, -1 complete disagreement between the true and predicted classes and 
0 random prediction. 
 
Table 5 reports the experimental results achieved by the imitation learning algorithm GAIL, 
exploiting an attention mechanism (GAIL+att) and without attention (GAIL), the neural 
network classifier with an attention mechanism (NN+att) and without attention (NN), the 
Random Forests (RF), the Gradient Boost (GB) and the SVM algorithms. Columns report the 
95% confidence interval of precision, recall, f1-score and the mcc w.r.t. resolution action types 
of ATCO. GAIL and NN variants are trained for 1500 mini-batches and epochs respectively. 
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Table 5 Experimental Results achieved by the one stage GAIL imitation with (GAIL att) and without (GAIL) attention, the neural 
network classifier with (NN att) and without (NN) attention, the Random Forests (RF), the Gradient Boost (GB) and the SVM 
algorithms. Columns report the 95\% confidence interval of precision, recall, f1-score and the Matthews correlation coefficient 
w.r.t. resolution action types of ATCO. GAIL and NN variants are trained for 1500 mini-batches and epochs respectively. 

 
 

9. Analysis of the results 
 
9.1. Prediction of trajectories per Origin-Destination pair, without explicitly 
considering conflicts. 
Table 1 shows that the proposed method is quite effective to predict the whole trajectory at 
the pre-tactical stage (M=0). Also, error measures are reduced in almost all cases, while 
increasing M, i.e. while we select a starting point towards the destination airport, simulating 
the tactical stage: This happens for instance in the prediction of very long trajectories 
regarding HEL-LIS. As an exception to that, the average along and cross track errors may 
increase while increasing M in cases, due to the complexities of the trajectories while 
approaching the destination airport (i.e. due to holding patterns, manoeuvres, etc.). Thus, it 
seems that a more refined approach must be used to address the landing part of the 
trajectory more accurately. This is also the case for the ETA error: If we eliminate the holding 
patterns while measuring errors for the LHR-FCO pair, we get unsigned ETA errors of 67.82, 
61.47, 45.94, 35.22 (signed -14.77, -24.22, -17.51, -8.74) seconds, for M in {0, 0.2, 0.5, 0.7}, 
respectively. Similar patterns are recorded for the other error measures, providing evidence 
to our conjecture about the difficulty of predictions in destination airports with complex 
holding patterns and multiple modes of approach. 
 
9.2. Develop an AI/ML learning method incorporating reinforcement learning for the 
resolution of conflicts. 
 
9.2.1 Model ATCO reactions 
Regarding the modes of ATCO reaction, results reported in Table 3 show that both the VAE 
and the Encoder networks achieve an f1-score greater to 0.9 on all modes, for the non-
weighted and the weighted measures, with VAE achieving the best results with a weighted 
f1-score greater or equal to 0.985±0.004 on all modes. Also the VAE outperforms the encoder 
on all measures, weighted or not, although the Encoder is really competitive. 
 
Similarly, for the sector-related case, as shown in Table 4, weighted measures are higher than 
the non-weighted. This shows that in many cases the model makes false predictions that are 
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penalized lightly by the weighted measures, given that, as it also happens in the sector-
ignorant case, they are not critical. 
 
Regarding the predictions of resolution actions, in the sector-related case results are not 
good: For instance, the f1-score of the A2 resolution action is 0.384±0.075 for the non-
weighted and 0.419±0.076 for the weighted measure. As already pointed out, this is further 
explored in the continuation of the work, as reported in the next subsection. 
 
9.2.2 Model ATCO decisions on resolution actions 
As shown in Table 5 the RF method achieves best results on the testing set with mean mcc 
value of 0.56, mean f1-score 0.77 for resolution action type A1 and mean f1-score 0.79 for 
resolution type A2. Slightly reduced mean mcc and f1-score is reported by the GB and the 
NN+att algorithms. The GB algorithm achieves a mcc mean value of 0.55 and mean f1-score 
0.76 for resolution action type A1 and 0.75 for resolution type A2. The NN+att achieves a mcc 
mean value of 0.55 and performs slightly different regarding the f1-score with a value of 0.77 
for both A1 and A2 resolution action types. 
 
This said, all three methods are greatly competitive with each other as the difference w.r.t. 
the mean mcc and f1-score is small (0.01). GB and NN+att report a narrower confidence 
interval compared to RF, implying smaller standard deviation between independent 
experiments. When considering the precision and recall measures reported, the differences 
between these algorithms are very small except for the significantly reduced confidence 
interval achieved by GB and the NN+att compared to the RF algorithm. The next most 
competitive method is the GAIL+att algorithm, reporting an mcc value of 0.48 for the testing 
dataset, mean f1-score 0.72 for resolution action type A1 and mean f1-score 0.75 for 
resolution action type A2. 
The SVM algorithm performs significantly worse compared to all other methods, achieving a 
mcc value 0.26 and f1-scores 0.58 and 0.66 for resolution action types A1 and A2, respectively. 
 
Considering the capacity of the models to learn, we observe that all methods, except the SVM, 
achieve a strong positive correlation between true and predicted A1 and A2 resolution action 
types on the training set with mcc values ranging from 0.6 (GAIL) to 1 (RF). F1 scores are also 
high for all methods, except for the SVM, with values in the interval [0.79, 0.98]. RF and GB 
achieve mean mcc values 1 and 0.95, respectively, significantly outperforming the GAIL and 
NN variants on the training set. GAIL+att and NN+att methods achieve mean mcc 0.65 and 
0.8 on the training set, respectively. 
The SVM performs poorly on the training set achieving 0.26 mean MCC value and mean f1-
score 0.58 and 0.66 for the A1 and A2 resolution action types. 
 
Finally, although classification methods outperform the GAIL method implementing the 
single-stage imitation learning task formulated, it must be noted that during learning, GAIL 
learns the trajectory evolution w.r.t. to the resolution action that it applies. This has the 
following benefits: a) GAIL can incorporate further trajectory optimization objectives in a 
straightforward way by augmenting its reward function with other terms i.e. added nautical 
miles, fuel consumed, CO2 emissions, etc., b) models learned by GAIL can be exploited by 
reinforcement learning methods that aim to solve conflicts and evolve the trajectories 
according to demonstrated maneuvers. These are issues to be investigated in the future, also 
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in comparison to the models learned by other methods, Specifically, the latter benefit will be 
studied while experimenting with the conflict-free trajectory planning framework proposed 
in this study. 
 

10. Conclusions and look ahead 
The concrete objectives of this study are as follows: 

A. Develop a formulation of the trajectory planning problem and of the constituent 
subproblems, considering prediction of trajectories and resolution of conflicts. 

B. Develop an AI/ML learning method incorporating reinforcement learning for the 
prediction of trajectories per Origin-Destination pair, without explicitly 
considering conflicts. 

C. Develop AI/ML learning methods incorporating reinforcement learning for the 
resolution of conflicts. 

D. Combine AI/ML models for the intertwined prediction of trajectories and the 
detection and resolution of conflicts, towards a method for the planning of 
conflicts-free trajectories. 

As already reported above, these objectives have been achieved to a large extent with 
innovative problem formulations and AI/ML methods, which have been evaluated to real-
world cases. 
This study still progresses on performing an experimental study towards achieving objective 
D. The emphasis in the upcoming months will be on this last objective. 
 
Therefore, no deviation is expected to what has been committed to within the PhD contract. 
 
All objectives are expected to have been achieved until the end of 2022, where the PhD study 
is expected to be awarded. 
Towards the completion of this PhD we also aim to investigate the role of flight plans on 
detecting conflicts, similarly to how ATCO use them: Initial results towards this were not 
encouraging, given the deviations of flown trajectories from flight plans and the uncertainty 
on the evolution of trajectories. 
 
As a follow-up of this work, interesting paths to follow are as follows: 

(a) Investigate the gathering of data sets that provide the maximum possible information 
towards alleviating the limitations of the data sets exploited in this study. These new 
data sets may come from simulated settings, however with valid features regarding 
ATCO observations and actions. Then the proposed methods can be further evaluated 
using this high-quality data recording important ATCO observations, without making 
specific assumptions on the detection of conflicts and the evolution of trajectories, as 
done in this study. These results will further show the potential of the models to be 
used in operational settings. 

(b) Investigate the combination of data-driven models learnt from the methods devised 
in this study, with active reinforcement learning techniques for the resolution of 
conflicts: This combination may result into methods that balance between ATCO 
reactions, as demonstrated in datasets, and active methods assessments on the 
reactions necessary to resolve conflicts, as learnt from the interaction with the 
operational setting. 
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(c) Investigate the effect of the models learnt to the explainability / transparency of the 
AI/ML methods exploiting them, as well as their effect to the trustworthiness on the 
automation using them. 

(d) Study an end-to-end method aiming to learn the evolution of trajectories, together 
with maneuvers for resolving conflicts: As said, this method must work in two state-
action spaces: One regarding the evolution of the trajectory states themselves, and 
the other on the evolution of the conflicts. This is a very challenging problem. 
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Annex I: Acronyms 
Term Definition 

ATM Air Traffic Management 

AI Artificial Intelligence 

ATC Air Traffic Control 

ATCO Air Traffic Controller 

ANSPs Air Navigation Service Providers 

AoR Area of Responsibility 

AOs Airport Operators 

ATE Along-Track Error 

AUs Airspace Users 

BT business trajectory 

BC Behavioral Cloning 

CD&R Conflict Detection and Resolution 

CTE Cross-Track Error 

CI Confidence Interval 

DTW Dynamic Time Warping 

ETA Estimated Time of Arrival 

FIR Flight Information Region 

GAIL Generative Adversarial Imitation Learning 

GB Gradient Boost 

ML Machine Learning 

MCC Matthews Correlation Coefficient 

MSE Mean Squared Error 

NM Network Manager 

NOAA National Oceanic and Atmospheric Administration 

NN Neural Network 

OD Origin-Destination 

RMSE Root Mean Square Error 

RF Random Forest 
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Term Definition 

RBT Reference Business Trajectory 

SBT Shared Business Trajectory 

SVM Support Vector Machines 

TBOs Trajectory-Based Operations 

VAE Variational Auto-Encoder 

V Vertical deviation 

WP Work Package 
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