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1. Abstract 

Uncertainties inherent to convective weather constitute a major challenge for the Air Traffic 
Management System (ATM), affecting its safety, capacity, and efficiency. Specifically, 
thunderstorms represent an important threat, as they involve phenomena such as strong 
turbulence, wind shear or hail. It is essential to avoid them to ensure both passenger comfort 
and aircraft structural integrity. Thunderstorms’ location and timing are hard to predict with 
certainty. This stochasticity is an important element that methodologies for aircraft trajectory 
planning must take into account. 

For this purpose, two different methodologies for flight planning in areas of uncertain 
thunderstorm development are proposed. Both are heuristic approaches that rely on the 
iterative manipulation of graphs. Moreover, to enhance computational performance and 
enable real time operation, they are parallelized by means of GPU programming, producing 
results in less than seconds. 

On one hand, the Scenario-Based Rapidly-Exploring Random Trees (Scenario-Based RRTs or 
SB-RRTs) are introduced, three algorithms for trajectory planning that explore an airspace 
with a tree structure. This kind of graph grows from the origin and looks for a connection with 
the destination through a safe sequence of tree branches. On the other hand, the Augmented 
Random Search (ARS) is proposed for trajectory deformation. This algorithm is applied to a 
graph, and it looks for the optimal sequence of edges, its relocation, and the best profile of 
velocities to minimize a combination of time and fuel. 

The methodologies are tested with Ensemble Prediction Systems (EPS) that characterize 
atmospheric uncertainties through a set of possible forecasts. Results reveal that the 
algorithms are able to ensure safety and minimize objectives, such as time of flight, flight 
distance or fuel consumption. 

 

2. Objective of the study 

The objectives of this thesis are: 

• Design of effective and efficient algorithms for aircraft trajectory planning and 
thunderstorm avoidance, since convective weather represents a major hazard for 
flights. 

• The algorithms must incorporate Ensemble Prediction Systems (EPS). Thunderstorms 
are uncertain phenomena that require weather products of high spatiotemporal 
resolution to be captured. Although present EPS are not able yet, this will be achieved 
by future convective-permitting EPS. For this purpose, the designed algorithms must 
be compatible with EPS. 
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• From a computational perspective, algorithms must be efficient and return results in 
a fast manner (∼ 10 seconds). Since the algorithms are to be used during the flight 
and thunderstorms evolve quickly, any methodology used for the planning must solve 
conflicts in near-real time. 

• To validate the algorithms, they must be tested in realistic case studies. For this 
reason, EPS built on real weather data are used. 

These objectives are aligned with Engage Thematic challenge 3: Efficient provision and use of 
meteorological information in ATM. The suggested methodologies will be compatible with 
high resolution weather products and will constitute possible support-tools for pilots and 
ATCOs. 

 

3. Motivation 

Uncertainties inherent to convective weather constitute a major challenge for the Air Traffic 
Management (ATM) system, affecting its safety, capacity and efficiency. For instance, in 2019 
these phenomena accounted for a quarter of the en-route delays over Europe [1]. Specifically, 
thunderstorms represent an important threat, as they involve adverse events such as strong 
turbulence, wind shear and hail. Avoiding them is critical to guarantee both passengers’ 
comfort and aircraft’s structural integrity. Since flying in stormy regions is challenging for 
pilots, it often results in delayed and diverted flights, with the corresponding increase in 
operational costs. Additionally, thunderstorm prediction is a troublesome topic, and their 
inherent stochasticity must be accounted for by flight planning agents. The main motivation 
of this thesis is the design and implementation of algorithms for aircraft trajectory 
optimization constrained by uncertain regions of thunderstorm development to be used by 
pilots and ATCOs, thus reducing their workload for the sake of safety and efficiency. 

It is worth noting that there are current efforts focused on the ground-air link of data with 
onboard information. The goal is to combine Numerical Weather Prediction (NWP) forecasts 
with radar, satellite and other additional observations, displaying the results on the 
cockpit [2]. Despite the fact that uplink systems have been successfully tested in the past in 
projects such as FLYSAFE [3] or eFlightOps [4], the real implementation in commercial aircraft 
is still under research. Aviation is subject to strict regulation and certification processes that 
need to be overcome before these systems are ready to be included in primary flight displays. 
However, the representation of such data on complementary devices (e.g., electronic flight 
bags) would provide pilots additional information and more time to react to thunderstorm 
evolution, minimizing deviations from the planned trajectory and hence saving fuel. An 
example of that type of technology is eWAS Pilot2, an app that provides pilots real time 
weather information from several sources through WiFi or 4G connections. Further 
motivation for this work would consist in designing methodologies to be integrated in the 
aforementioned systems, suggesting possible diversions from the flight plan to overcome 
updated weather events.  
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4. Advances this work has provided with regard to the state of the art 

During the literature review, the identified research gap is the lack of algorithms for aircraft 
trajectory planning that account for uncertain thunderstorm development and achieve 
reduced computational times. On one hand, there are methodologies that successfully avoid 
uncertain storm cells, but are not computationally efficient to return fast results, e.g., [5, 6]. 
On the other hand, those tools that satisfy operational constraints do not work with stochastic 
weather data, e.g., [7-11]. 

On this basis, and from the objectives set in Section 2, two methodologies have been 
developed accordingly: the Scenario-Based RRT*1 and the Augmented Random Search for 
deformation of graphs (see Section 5). Both approaches meet the objectives: 

• They are able to integrate EPS to characterize thunderstorm uncertainty in 
anticipation for future weather prediction products. 

• They achieve computational times compatible with near-real time operation and 
produce results in less than 10 seconds. 

• They are tested in case scenarios with data obtained from real weather data. 

 

5. Methodology 

For a given airspace 𝑋𝑋, the space of possible trajectories Γ is intractable, since there are 
multiple combinations of states 𝑠𝑠 and controls 𝑢𝑢 that would connect a pair of coordinates 
𝑥𝑥0, 𝑥𝑥𝑓𝑓 ∈ 𝑋𝑋. For this purpose, the search is simplified. In this work, we consider a state space 
𝑆𝑆 that includes latitude 𝜙𝜙, longitude 𝜆𝜆, TAS 𝑣𝑣 and mass 𝑚𝑚; the control space 𝑈𝑈 includes 
heading angles 𝜒𝜒 and thrust coefficient 𝐶𝐶𝑇𝑇. 

Under these assumptions, there are two distinguishable pieces: First, a spatial component, 
represented by the evolution of latitude and longitude according to true heading. Second, a 
dynamic component, characterized by the evolution of TAS and mass due to thrust 
coefficient. These two fragments are modelled separately: 

• The spatial component is approximated with a graph 𝐺𝐺 = {𝐴𝐴,𝐸𝐸}, where 𝐺𝐺 ⊂ 𝑋𝑋. The 
graph is formed by nodes 𝑎𝑎 ∈ 𝐴𝐴 ⊂ 𝑋𝑋 and edges 𝑒𝑒 ∈ 𝐸𝐸 ⊂ 𝑋𝑋. Each node is characterized 
by some particular coordinates included in the airspace 𝑥𝑥 ∈ 𝑋𝑋, whereas each edge sets 
a connection between two nodes. For a given pair of nodes connected by an edge, the 
evolution of true heading is determined, and the integration of latitude and longitude 
is immediate. 

• The dynamic component is defined with a Mach schedule 𝑀𝑀𝑠𝑠. The schedule represents 
the velocities that should be achieved when flying along any edge from the graph. 

 
1 Superscript * refers to the optimal variants of RRT algorithms. For compactness, RRT* is the Optimal RRT. 
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Since the changes in velocity are known, thrust T can be calculated from this variation, 
which also determines the evolution of mass. 

This thesis presents two methodologies that make use of two different types of graph: 

• The Rapidly-Exploring Random Tree (RRT) builds a tree that explores the safe space 
𝑋𝑋𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠 ⊂ 𝑋𝑋 (i.e., the space free of storms) through an iterative and random process. A 
tree is a particular kind of graph in which all the nodes are connected to an initial node 
by a sequence of edges. The goal of RRTs is to add the destination to the tree so that 
it is connected to the initial node with a safe path. If the process is successful, the 
algorithm returns a list of safe nodes and edges between origin and destination. In this 
work [a], the Scenario-Based RRT* (SB-RRT*) is presented, an optimal variant of RRTs 
that integrates EPS. 

• The Augmented Random Search (ARS) algorithm is used to deform an initial graph [b]. 
In this case, the graph is built in a pre-processing stage and defines a set of multiple 
nodes and edges between origin and destination. The graph is created from a Voronoi 
diagram to set connections through regions that are less likely to be occupied by 
storms. The objective of the ARS is to find the most suitable sequence of nodes from 
a graph and relocate them to optimize a cost function. 

 

6. Description of the data the study relies on 

Different sources of information are considered for each of the methodologies: 

6.1. Scenario-Based RRT* 

The test area consists of a stormy region detected by the Rapid Developing Thunderstorms 
(RDT) (http://www.nwcsaf.org/web/guest/nwc/geo-geostationary-near-real-time-v2018) 
system on November 16th, 2017 at 6:00 Zulu time. RDT is a product developed by Meteo-
France for the detection, monitoring and forecast of convective cells, which uses imagery 
obtained by Meteosat Second Generation satellites. It is able to characterize convective 
systems around Europe every 15 minutes with a horizontal resolution of 3 km.  

RDT output includes a list of convective objects (Fig. 1(a)), as well as their speed, direction of 
motion, phase (e.g. growing, decaying.) and a deterministic extrapolation into the future. This 
data is post-processed, as illustrated in Fig. 1(b), incorporating uncertainties in the cell motion 
and obtaining the probability map 𝑝𝑝(𝑥𝑥) shown in Fig. 1(c). The function 𝑝𝑝 represents the 
probability that 𝑥𝑥 ∈ 𝑋𝑋 is in a storm, where 𝑥𝑥 = (𝜙𝜙, 𝜆𝜆). To be able to capture storm cells more 
accurately, NWP is evolving towards convective-permitting ensemble prediction systems 
(EPS) of very high spatiotemporal resolution. These are not available yet but are expected in 
the near future. In consequence, to simulate an ensemble-based input and obtain different 
possible forecasts for the SB-RRTs, different ensemble members are sampled from the 
probability map in Fig. 2(a) as follows: 

http://www.nwcsaf.org/web/guest/nwc/geo-geostationary-near-real-time-v2018
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• The map is first discretized with a 0.1 deg step in latitude and longitude. 
• For each position, a random number is taken from a uniform distribution between 0 

and 1. If this number is lower than the actual probability of storm at the position, a 
storm is assigned to that position. For example, if the probability of having a storm is 
90%, any sample between 0 and 0.9 corresponds to having a storm. 

• The positions with a storm are clustered by means of a density-based clustering 
method, DBSCAN [12]. Finally, the polygon that encloses each cluster is 
calculated [13]. 

 
Figure 1. Methodology to build a probabilistic storm model based on RDT forecasts by means of a time-lagged ensemble 
forecast (see[5]). 
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An example of the process is shown in Fig. 2(b). As the result is a group of polygons, the 
intersection of each polygon with a RRT edge, if it exists, can be calculated by means of 
geometric operations. Fig. 2(c) shows an example with 20 ensemble members. 

 
Figure 2. Probability map (left), sample taken from it (center), and ensmeble of 20 members (right). 

 

6.2. ARS for graph deformation 

The ARS algorithm is being used to deform a graph that, for example, can represent a 
structured airspace. The objectives of such deformations are twofold: First, minimize costs 
and reduce flight times. Second, adapt to any possible motion in the storm cells. For this 
purpose, this section covers how a time varying ensemble forecast was obtained. To produce 
a precipitation nowcast, the open source library Pysteps [14] has been used. Pysteps provides 
a modular framework for researchers interested in developing new methods for nowcasting 
and stochastic simulation of precipitation. It is a highly configurable and easily accessible 
platform suitable for researchers ranging from weather forecasters to hydrologists. The 
Pysteps library implements several optical flow methods as well as advanced stochastic 
generators to produce ensemble nowcasts. 

In this work, OPERA [15] radar images are used as the observational input for Pysteps. OPERA 
is the EUMETNET (https://www.eumetnet.eu/) operational weather radar network in Europe 
that covers more than 30 countries and contains more than 200 weather radars. OPERA 
produces three types of composites: instantaneous surface rain rate, instantaneous 
maximum reflectivity and hourly rainfall accumulation. These composites cover the whole of 
Europe in a Lambert Equal Area projection and they are updated every 15 minutes. 

• In the rain rate composite each composite pixel is a weighted average of the valid 
pixels of the contributing radars, weighted by a quality index, the distance from center 
of the pixel and an exponential index related to inverse of the beam altitude. 

• The rainfall accumulation composite is simply the sum of the previous four 15-minute 
rain-rate products. 

• In the maximum reflectivity composite each composite pixel contains the maximum 
of all polar cell values of the contributing radars at that location.  

https://www.eumetnet.eu/
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Figure 3. Surface precipitation for 3 members of the EPS at intervals of 30 minutes. Initial date June 2nd, 2018, 13:00:00. 

Then, nowcast are produced by the following steps. First, the optical flow Lucas-Kanade [16] 
algorithm is applied to two consecutive rain rate composites for finding an estimation of the 
precipitation motion field. Secondly, the motion field is used to generate a deterministic 
nowcast with the S-PROG model [17]. The S-PROG algorithm implements a scale filtering 
approach in order to progressively remove the unpredictable spatial scales during the 
forecast. Finally, an stochastic component is added to the deterministic forecast using the 
STEPS method [18]. The result is an ensemble of 15 nowcast of the precipitation field. A 
sample of 3 members of the ensemble is shown in Fig. 3, at intervals of 30 minutes, starting 
at 13:00:00 on June 2nd, 2018. 

 

7. Computational experiments 
7.1. Scenario-Based RRT* 

Three algorithms were tested in [a]: 

• SB-RRT: an update of RRT that integrates EPS and guarantees safety up to a user-
defined safety margin 𝜖𝜖. This algorithm only ensures safety and do not lead to optimal 
solutions. Each time the algorithm runs, it returns a completely different and random 
trajectory. 
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• SB-RRT*: a variant of SB-RRT that ensures safety and asymptotic optimality. It includes 
routines that reorganize the internal structure of the tree to minimize the distance 
between the origin and any other coordinate (such as the destination). 

• Informed SB-RRT*: a variant of SB-RRT* that enhances convergence. Since the SB-
RRT* does not converge efficiently, the search is focused on the regions around the 
optimal solution, and not all the airspace. 

The algorithms and their pseudocodes are presented and detailed in [a]. The novelty of these 
approaches is the so-called dynamic risk allocation that ensures safety under uncertainties 
captured by EPS. The algorithms are tested using a kinematic model of an aircraft at constant 
altitude and airspeed. Note that they would be able to handle more complex dynamical 
models, but the goal of this work was to demonstrate how to deal with ensemble-based 
weather products. 

The methodologies require calculating the intersections between each branch of the tree and 
a set of polygons. This repetitive task is implemented in parallel, through GPU computations. 
As a consequence, simulations were sped up from days to seconds. Computational times, 
were reduced by a factor between 500 and 5000 depending on the number of members in 
the ensemble 

In the case study included in [a], the state variables are latitude and longitude, and the 
airspace is [−24∘,−19∘] × [28∘, 35∘]. The aircraft flies between (−22∘, 34∘) and (−20∘, 29∘) 
at constant flight level FL300. The weather data is obtained according to the process in section 
6.1, getting an ensemble of 20 members. The computations were performed in a workstation 
equipped with an Intel Xeon E3-1240 CPU running at 3.5 GHz and a NVIDIA Quadro M4000 
GPU of 8 GB. 

 
7.2. ARS for graph deformation 

A new methodology for trajectory deformation is presented and tested in [b]. To this end, a 
graph between origin and destination is created, setting multiple possible connections 
between them. With the Augmented Random Search (ARS) algorithm, we address two 
objectives: 

• Find a sequence of edges in the graph that connect origin and destination. 
• Relocate and deform those edges and find a velocity schedule that allows to reduce 

time of flight, fuel consumption, and avoid moving storms. 

An optimization problem is formulated, in which the objective function is a weighted 
combination of total time of flight, fuel consumption and time spent in storms. Such objective 
is minimized in average accounting for the effects of all the members in the EPS. By tuning 
the weight corresponding to each objective, different goals are achieved: minimum time of 
flight, minimum consumption, no risk of storms. 
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In the case study included in [b], the state variables are latitude, longitude, TAS and mass, and 
the airspace is [35∘, 50∘] × [−15∘, 15∘]. The aircraft flies between (47∘, 5∘) and (38∘,−5∘) at 
constant flight level FL300. The BADA model for A320 is considered for the aerodynamic and 
propulsive forces. The weather data ensemble in section 6.1, with an ensemble of 15 
members. The computations were performed in a workstation equipped with an Intel Xeon 
E3-1240 CPU running at 3.5 GHz and a NVIDIA Quadro M4000 GPU of 8 GB. 

 

8. Results 
8.1. Scenario-Based RRT* 

All the graphs in this section are published in [a]. First, the growth of each of the three variants 
of RRT is presented, for 500, 1000 and 2000 iterations. In Fig. 4, the expansion of the SB-RRT 
is shown. This algorithm is not optimal, and every simulation produces a different random 
and safe solution. 

 
Figure 4. SB-RRT expansion (green) and solution (red) after 500, 1000 and 2000 iterations. 

Fig. 5 shows the expansion of a SB-RRT*. The tree grows occupying the safe space and 
minimizing the flight distance to each coordinate. 

 
Figure 5. SB-RRT* expansion (green) and solution (red) after 500, 1000 and 2000 iterations. 
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To conclude, the growth of Informed SB-RRT* is shown in Fig. 6. The search is limited to the 
region around the solution of minimum cost. It starts growing as a SB-RRT*, but once a 
solution is found, the search is narrowed to an ellipsoid. This ellipsoid shrinks when a better 
solution is obtained. 

 
Figure 6. Informed SB-RRT* expansion (green) and solution (red) after 500, 1000 and 2000 iterations. 

Since the RRT is a heuristic methodology that grows randomly, the sensitivity of the three 
variants is shown. First, the SB-RRT* is presented in Fig. 7. Three different local solutions are 
obtained. Contrariwise, the informed variant is able to go directly to the optimum in less 
iterations as shown in Fig. 8. 

 
Figure 7. Sensitivity of the SB-RRT* to the maximum number of iterations. 
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Figure 8. Sensitivity of the Informed SB-RRT* to the maximum number of iterations. 

To conclude, the evolution of cost with the number of iterations for multiple simulations is 
shown in Fig. 9. The difference in flight distance with respect to the great circle connecting 
origin and destination (cost of safety) is plotted. Different colour bands represent 0, 10, 90, 
100 percentiles, whereas the solid black line is the median. 

 
Figure 9. Cost of safety as a function of the number of iterations for the SB-RRT* and the Informed SB-RRT*. 

 

8.2. ARS for graph deformation 

All the graphs in this section are under review for publication in [b]. First, the trajectory 
obtained as a solution in the case study is shown in Fig. 10. Second, Fig. 11 shows the 
trajectories that are sampled from the graph during the iterative process in the ARS. In the 
beginning, the samples cover the entire graph, however, as the algorithm converges, the 
optimal trajectory is sampled with probability 1. 
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Figure 10. Evolution of the solution with respect to time. 

 
Figure 11. Trajectories sampled from the graph with respect to the numbers of iterations. 

Since the ARS is a heuristic algorithm, the objective function converges in a different manner 
during each simulation. The evolution of cost with respect to the number of iterations is 
shown in Fig. 12 for 20 simulations. Different colour bands represent 0, 10, 90, 100 
percentiles, whereas the solid black line is the median. 
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Figure 12. Estimated cost as a function of the number of iterations for 20 simulations. 

To conclude, the effects of a cost index (time/fuel) in the state variables are shown in the 
Pareto frontier from Fig. 13 and the profiles from Fig. 14.  

 
Figure 13. Estimated fuel burn as a function of the estimated time of flight for different cost index. 

 
Figure 14. Mach number and fuel consumption evolution as a function of ground distance from the origin for different cost 
index. 

During a research stay at EPFL (Dec21-Mar22), the second approach was extended to consider 
multiple aircraft. The result is a methodology that can be used to avoids storm and conflicts 
between aircraft. A conference paper that details this variation was submitted [e]. 
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9. Analysis of the results 
9.1. Scenario-Based RRT* 

The analysis of the SB-RRT* results reveals that during the first series of iterations (Figs. 7(a)-
7(b)) there is a wide spectrum of safe solutions, but none of them are optimal. As the 
iterations increase (Fig. 7(c)), it is noticeable that the algorithm converges to 3 possible 
solutions, thus indicating the existence of different local optima. This is indeed a positive fact, 
as different alternatives, all of them safe, can be proposed to both pilots and air traffic 
controllers in times compatible with practical settings (seconds/minutes). Contrariwise, the 
trajectories provided by the Informed SB-RRT* converged to the global optimum (in terms of 
flight distance) after a lower number of iterations (Figs. 8(a)-8(c)). All the SB-RRT* simulations 
would eventually converge to this same solution but involving a larger number of iterations. 
This fact demonstrates the higher efficiency of the informed approach. 

To conclude, a percentile representation of the cost function is shown in Fig. 9 for 20 
simulations, considering the SB-RRT* and the Informed SB-RRT*. The region of interest 
between 500 and 1000 iterations is zoomed on the right. It can be observed that as the 
maximum number of iterations is increased, the cost of safety decreases, and so does the 
variability in the solutions. These results allow the conclusion that it might not be necessary 
to run the algorithms for a large number of iterations. On one hand, the highest costs 
obtained by the SB-RRT* after 500 and 1000 iterations were 10.4% and 6.7%, respectively. In 
half of the simulations, the error is less than 4.7% and 3.1% after 500 and 1000 iterations, 
respectively. On the other hand, as was to be expected, the Informed SB-RRT* presented less 
variability for the same number of iterations. The highest costs were 2.4% and 2.0% after 500 
and 1000 iterations, respectively. 

Although the SB-RRT* is a slightly faster algorithm, it requires more iterations to reach the 
same convergence levels. By way of example, the 300 iterations of the Informed SB-RRT* take 
10 seconds, whereas running the SB-RRT* for 1000 iterations takes around 1 minute. 

 
9.2. ARS for graph deformation 

The maximum number of iterations represents the stopping criteria for the algorithm. It is 
required to be large enough to ensure convergence to a close-to-optimum solution, but not 
too large to ensure computational times are compatible with near real time operation. Fig.11 
represents the population of paths sampled from the graph. There are three phases that can 
be observed (and were present in all the simulations): 

• Exploration: After 1000 iterations (Fig. 11(a)), the population is covering the entire 
initial graph with some slight deformations. During this phase, the algorithm is mainly 
optimizing the successor choice, testing a wide variety of paths and checking which of 
them are more efficient 
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• Offset regulation: Then, after 2000 iterations (Fig. 11(b)), the algorithm has found 
which sequence of nodes is more convenient, starts looking or the optimal offsets and 
adapts to weather features. It can be observed that the population is condensed 
around a main path. 

• Finally, after 5000 to 10000 iterations (Figs.11(c)-11(d)), the Mach schedule is refined 
to meet with the cost function requirements (fast trajectory vs fuel savings). 

ARS is a heuristic algorithm that explores a parametric space based on a randomized process 
to reach an optimal solution. For each simulation, the search is performed in a different 
manner. Ideally, the algorithm would be running indefinitely, always looking for slight drops 
in cost. However, since that is impossible, the smallest number of iterations that produces 
results with a reduced variability is sought It is expected that during the first iterations the 
cost evolution varies between simulations, but after a sufficient number of them, the results 
should converge to the same values. To show this variability, the evolution of expected cost 
with respect to the number of iterations is shown in Fig. 12 considering 20 simulations. As it 
was expected during ∼4000 iterations, there exists a variability in the results between 
simulations. However, after a larger number, these differences are negligible. In 
consequence, after ∼4000 iterations and a computational time of ∼8 seconds, the algorithm 
has converged producing the close-to-optimal solutions included in Fig. 10. 

To conclude, the effects of the cost index are analysed. As it was expected, for a lower cost 
index, the algorithm minimizes fuel, reducing consumption and velocity, leading to large time 
of flight. On the contrary, a large cost index implies flying faster, increasing fuel consumption 
and reducing total time. This is shown in Figs. 9-10. 

 

10. Conclusions and look ahead 

In this thesis, two different methodologies for aircraft trajectory optimization under uncertain 
thunderstorm development are presented. In anticipation of future NWP products, an 
ensemble of possible weather forecasts is used to characterize these uncertainties. 
Moreover, both works rely on parallel GPU programming, producing close-to-optimum 
solutions in seconds and being compatible with near-real time operation. 

In first place, the scenario-based methodology for RRTs is detailed and applied to the RRT, the 
RRT* and the Informed RRT*. This leads to the so-called Scenario-Based RRTs, three 
algorithms for flight planning in areas of convective weather. Each of them is able to find a 
safe trajectory between a pair origin-destination constrained with a safety margin. 
Additionally, the SB-RRT* and the Informed SB-RRT* are used to minimize flight distance and 
increase efficiency. Secondly, an algorithm for graph deformation based on the Augmented 
Random Search is proposed. The result is a code for aircraft trajectory planning able to 
connect two states with a safe trajectory. Given a relative weight between time of flight and 
fuel consumption, it finds the most efficient route. 
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The main disadvantage of heuristic techniques such as RRTs or ARS is that each iterative 
process and the convergence towards a solution is different. For this purpose, a sensitivity 
analysis is performed, revealing that the algorithms require less than 10 second to converge. 

As follow-up activities, the effect of the number of storm cells and their arrangement on the 
convergence rate will be explored, as the number of iterations to approach close-to-optimum 
solutions seems to be affected. The geographical region might also be considered in the 
analysis, since weather changes notably between them. Additionally, the formulation can be 
extended to consider not only weather but restricted areas or congested sectors. 
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Annex I: Acronyms 
Term Definition 

ARS Augmented Random Search 

ATM Air Traffic Management 

EPS Ensemble Prediction System 

NWP Numerical Weather Prediction 

RRT Rapidly-Exploring Random Tree 

TAS True Airspeed 
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