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1. Abstract 
Among the navigation means, Global Navigation Satellites Systems (GNSS), and namely the Global 
Positioning System (GPS), have become essential and the availability of a GNSS navigation solution 
on board seems completely natural. However, the quality of the position calculated by the on-board 
equipment may be reduced when the received signal is degraded. This degradation can find its origin 
in a defect of the signal generation system, carried by the satellite, or in the receiving conditions, 
typically when interferences or multipaths are in addition to the desired signal. 

The objectives of the thesis were to detect, classify, identify and finally reduce the impairments of 
the GNSS signals seen by the on-board receiver, by means of Machine Learning techniques. 

More specifically, the performance of Machine Learning methods has been assessed on the signal at 
the correlator output, the correlator output in short. Indeed, the correlator output is a key element 
in the calculation of the aircraft’s position by the receiver, and, consequently, it is the link in the 
signal processing chain where the degradations have the most significant impact. 

Correlations of the received signal with a local replica over a (Doppler shift, propagation delay)-grid 
are mapped into grayscale 2D images. They depict the received information possibly contaminated 
by multipath propagation. The images feed a Convolutional Neural Network (CNN) for automatic 
feature construction and multipath pattern detection. 

The issue of unavailability of a large amount of supervised data required for CNN training has been 
overcome by the development of a synthetic data generator. It implements a well-established and 
documented theoretical model. A comparison of synthetic data with real samples is proposed. 

The complete framework is tested for various signal characteristics and algorithm parameters. The 
prediction accuracy does not fall below 93% for Carrier-to-Noise ratio (C/N0) as low as 36 dBHz, 
corresponding to poor receiving conditions. In addition, the model turns out to be robust to the 
reduction of image resolution. 

2. Objective of the study 
The objectives of the thesis were to detect, classify, identify and finally reduce the impairments of 
the GNSS signals by means of Machine Learning techniques applied to the signal at the output of the 
correlator. 

More specifically, in a first step, the correlator output in presence of known degradations had be 
modelled, to enable the training phase of the Machine learning algorithms on a reference dataset. 
These algorithms had to be identified or designed and implemented during the thesis. In a second 
step, the Machine Learning algorithms were then to be run on a validation dataset to detect, classify 
and identify the different degradations. Depending on the performance achievements, methods 
aiming at mitigating the effect of the degradations could be implemented in a last step. These 
methods may range from a simple exclusion of a degraded signal from the calculation of the position 
solution to methods as fine as cancellation of the anomaly by means of techniques similar to the 
ones used in the suppression of the pollution noise in acoustics. 

3. Motivation 
The constant growth of air traffic requires the continuous improvement of the Air Traffic 
Management (ATM) system and in particular of the supporting services such as Communication, 
Navigation and Surveillance (CNS). 
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Indeed, the necessary increase of the capacity of the ATM system can not be done without better 
performances of the CNS components. More specifically, the navigation performances of the 
aircraft, accuracy, integrity, continuity and availability, have to be strengthened. Among the 
navigation means, GNSS, and especially GPS, have become essential and the availability of a GNSS 
navigation solution on board seems completely natural. 

However, the quality of the position calculated by the on-board equipment may be reduced when 
the received signal is degraded. This degradation can find its origin in a defect of the signal 
generation system, carried by the satellite, it is the evil waveform case, or in the receiving 
conditions, typically when interferences or multipaths are in addition to the useful signal. 

Inside the GNSS receiver, the signal at the correlator output, the correlator output in short, is a key 
element in the calculation of the aircraft's position and consequently is the link in the signal 
processing chain where the degradations have the most significant impact. That is why large 
amounts of research and analysis have been conducted to detect, classify, identify and finally 
mitigate the degradations at the correlator output. 

They have clearly shown the limits of the “classical” signal processing methods, proposing solutions 
whose effectiveness is mixed. 

The recent and significant advances in Artificial Intelligence (AI), and notably in Machine Learning, 
have opened up new perspectives, and the question arises if these techniques could provide a 
significant reduction of the impact of the signal degradations on the quality of the position delivered 
to the aircraft navigation system. 

4. Advances this work has provided with regard to the state of the art 
A large amount of research and analysis has been conducted so far to detect, classify, identify and 
finally mitigate these impairments. As the GNSS receiver has to track the direct signal by mean of a 
Delay-Locked Loop (DLL) to estimate the propagation delay, multiple methods have been proposed 
which use the already existing correlator outputs required by this DLL. The narrow correlator 
technique [1], the early–late-slope technique [2], the strobe correlator [3], the double-delta 
correlator [4] and the multipath intensive delay lock loop [5] are among the most representative 
methods of this class. They all take advantage of the geometric shape of the auto-correlation 
function of the Pseudo-Random Noise (PRN) code, as defined later on in (2) and (3) and illustrated in 
Figure 3, to detect and mitigate the multipath distortion. Their relative simplicity is their principal 
benefit at the expense of their effectiveness. On the other hand, more sophisticated techniques, yet 
demanding in hardware resources, have been developed. In the statistical approach, the Multipath 
Estimating Delay Locked-Loop (MEDLL) is a reference implementation of the maximum likelihood 
principle [6]. It matches the correlator outputs with candidates of multipath auto-correlation 
functions parameterized by magnitudes, delays, and phases. The shortest estimated delay is then 
retained as the one of the direct path. The frequency domain has also been explored, through the 
Fourier transform [7] or the wavelet decomposition [8]. Indeed, due to their specific spectral 
characteristics in comparison to the direct path, the multipath can be identified and excised. 
However, these methods may damage the signal of interest, especially when the multipath 
frequencies are close to the spectrum of the direct path. 

To overcome the limitations of these classical signal processing methods, Machine Learning 
techniques have also been considered. Starting from the early 2000s, some research work has been 
dedicated to the use of Machine Learning techniques to facilitate the error mitigation in GNSS 
signals. For instance, a hybrid neural network architecture based on multilayer perceptron to 
mitigate multipath error for Low Earth Orbit (LEO) satellites has been proposed [9]. Later, with the 
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advances of kernel methods, the authors of [10] were able to develop a support vector regressor to 
mitigate multipath on ground fixed GPS stations and using signal geometrical features. Other similar 
studies were conducted with various choices of features construction. 

For example, in [11, 12], non-line of sight (NLOS) multipath detection is carried out using features 
directly extracted from the correlator output. The recent and significant advances in Artificial 
Intelligence, and notably in Machine Learning, have opened up new perspectives. In [13], using a 
CNN, a carrier-phase multipath detection model is developed. The authors propose to extract 
feature map from multi-variable time series at the output of the signal processing stage using 1-
dimensional convolutional layers. Deep learning spoofing attack detection in GNSS systems was 
addressed in the research literature [14] as well. Hand-crafted features based on early–late phase, 
delay and signal level from the correlation output of the tracking loop were used to train a deep 
fully-connected neural model. A review of the recent applications of Machine Learning in GNSS is 
also proposed in [15], focusing on use cases relevant to the GNSS community. 

The method proposed in this PhD thesis aims at making use of an efficient CNN architecture for 
multipath detection. The intent is to exploit the full power of CNN by letting the convolutional 
mechanism construct its own feature space from the whole correlator information. 

Indeed, features are not extracted from the signal but the signal is rather transformed into 2D 
images in the time–frequency domain. No correlator output signal information is lost during the 
process and the CNN is able to build its own representation of corrupted/non corrupted correlated 
signals. 

The search ranges for the values of the propagation delay and the Doppler shift spans a 2D grid 
which forms in turn 2D-images at the output of the correlation process, the correlator output in 
short. Regarding the phase value, the phase estimation error is captured over [0, 2𝜋𝜋] by mean of two 
orthogonal projections. These projections are carried out by the correlation with the In-phase (I) 
signal replica on one side and the in-Quadrature (Q) signal on the other. A diagram representing this 
process is given in Figure 1. As depicted, the correlation operation is implemented through a product 
followed by an integrate and dump stage and generates 2D image representations of the I and Q 
channels. These images coded into 3D tensors will feed a downstream CNN, as it will be seen below. 



   

Engage PhD final reporting 5 

This PhD thesis proposes a complete framework to train and assess a CNN model on correlator 
output 2D-images in order to detect whether the GNSS signal is subject to multipath or not. A 
graphical representation of this framework is given in Figure 2. The developed technique exploits the 
full power of deep learning architectures by sampling the complete correlated signal information in 
the time–frequency domain and the I and Q channels. Features are not handcrafted but rather 
constructed automatically by the convolution mechanism that elaborates its own representation of 

the relevant feature space to detect multipath corrupted signals. 

The main contributions of this PhD thesis can be listed as follows: 

• Raw and complete information from the GNSS correlator outputs are synthesized in 2D-
images. The correlation delay and Doppler shift ranges are selected in order to capture 
complete multipath information. This is a novel approach in comparison to standard 
multipath mitigation techniques that are using only one dimensional delay correlation 
information. 

• A CNN model is used to automatically extract relevant features for multipath detection from 
the images of correlator outputs. This contributes to the very recent and emergent use of 
modern Machine Learning techniques in the GNSS signal processing field. 

 
Figure 1: Synoptic view of the correlation process. The received signal is correlated with two local replica 
signals in quadrature whose parameters span a grid. The two correlator outputs form then 2D-images which 
fed a downstream CNN. The tilde notation indicates the local parameter by opposition to the received signal 
unknown parameter. 

 
Figure 2: Proposed framework to train and assess a CNN model on correlator output 2D-images. 
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• The proposed framework covers the generation of image data, the choice of the CNN 
architecture, its training as well as its validation. Experiments are fully reproducible. To the 
best of our knowledge such complete workbench is unique in the research community. 

• The achieved average detection accuracy for realistic multipath parameters ranges in 
standard receiving conditions is above 93%. This performance has been shown to be robust 
to the reduction of correlator output image resolution. 

5. Methodology 
5.1 GNSS signal model 
The fundamental principle behind the calculation of the user position by a GNSS receiver is 
trilateration. It implies the measurement of the geometric distances between the antenna of the 
receiver and satellites of known positions. Indeed, a distance 𝑑𝑑 in particular is estimated through the 
propagation delay affecting the signal during its propagation from the satellite to the receiver 
antenna, 𝜏𝜏 = 𝑑𝑑∕𝑐𝑐 with 𝑐𝑐 the speed of light. This is made possible by a specific signal structure, 
recalled in Equation (1) which models the signal at the antenna port [16]: 

𝑟𝑟(𝑡𝑡) = 2𝐶𝐶𝐶𝐶(𝑡𝑡 − 𝜏𝜏)𝑐𝑐(𝑡𝑡 − 𝜏𝜏) cos(2𝜋𝜋(𝑓𝑓 𝑐𝑐 + 𝛿𝛿𝑓𝑓 )𝑡𝑡 + 𝜃𝜃) + 𝑏𝑏(𝑡𝑡) (1) 

where 

• 𝐶𝐶 is the power of the received signal, 

• 𝐶𝐶(𝑡𝑡) is the navigation message, binary encoded (±1), 

• 𝑐𝑐(𝑡𝑡) is the PRN code sequence, specific to each satellite, 

• 𝑓𝑓 𝑐𝑐 is the carrier frequency, 

• 𝑏𝑏(𝑡𝑡) is an Additive White Gaussian Noise (AWGN) which accounts for the thermal noise of 
the receiver, referred to the antenna port. 

The results presented in this PhD thesis were established using the PRN code sequences of the GPS 
L1 C/A legacy signal. However, the authors are confident that they could be generalized to other 
navigation signals, with the same structure, as no specific assumption has been made on 𝑐𝑐(𝑡𝑡). 
In this model, the receiving condition of a signal in particular is assessed by its 𝐶𝐶∕𝑁𝑁0 figure, in other 
words the ratio of the signal power to the Power Spectral Density (PSD) level 𝑁𝑁0 of the (white) noise 
𝑏𝑏(𝑡𝑡). Clearly, the accuracy of the estimation of the related distance 𝑑𝑑 will depend upon this 𝐶𝐶∕𝑁𝑁0 
ratio. Without any other perturbation than the noise, the quality of the final position calculated by 
the receiver, from a set of distances 𝑑𝑑 at its disposal, is then completely determined by the 
corresponding set of 𝐶𝐶∕𝑁𝑁0 ratios, along with the relative satellites–receiver geometry though. 

A model of the I and Q correlator outputs [16] is as follows: 

𝐼𝐼 = 𝐴𝐴𝐴𝐴(𝛥𝛥𝜏𝜏) cos(𝜋𝜋𝛥𝛥𝑓𝑓𝜋𝜋𝑖𝑖 + 𝛥𝛥𝜃𝜃) sinc(𝜋𝜋𝛥𝛥𝑓𝑓𝜋𝜋𝑖𝑖) + 𝑛𝑛𝐼𝐼 (2) 

𝑄𝑄 = −𝐴𝐴𝐴𝐴(𝛥𝛥𝜏𝜏) sin(𝜋𝜋𝛥𝛥𝑓𝑓𝜋𝜋𝑖𝑖 + 𝛥𝛥𝜃𝜃) sinc(𝜋𝜋𝛥𝛥𝑓𝑓𝜋𝜋𝑖𝑖) + 𝑛𝑛𝑄𝑄 (3) 

with 

• 𝜋𝜋𝑖𝑖 the integration time, 

• 𝐴𝐴 a coefficient depending on 𝐶𝐶, 𝐶𝐶 and 𝜋𝜋𝑖𝑖, 
• 𝛥𝛥𝜏𝜏 the propagation delay estimation error, 

• 𝛥𝛥𝑓𝑓 the Doppler shift estimation error, 

• 𝛥𝛥𝜃𝜃 the phase estimation error, 

• 𝐴𝐴(𝛥𝛥𝜏𝜏) the auto-correlation function of the PRN code in 𝛥𝛥𝜏𝜏,  
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• 𝑛𝑛𝐼𝐼 and 𝑛𝑛𝑄𝑄 the noise components. 

Figure 3 gives a graphical representation of the noise-free 𝐼𝐼 and 𝑄𝑄 correlator outputs as functions of 
𝛥𝛥𝜏𝜏 and 𝛥𝛥𝑓𝑓 , for 𝛥𝛥𝜃𝜃 = 0. 

5.2 Multipath contamination 
As some perturbations can distort the desired signal, the received signal cannot always be modelled 
simply using Equation (1). Among these perturbations, multipath is considered to be an important 
source of degradation [17]. This is especially the case in urban environment, inducing reduced 
positioning accuracy. Multipath is due to the reflection of the direct signal path on a surface in view 
of the receiver. As a consequence, a specific multipath can be modelled in the same way as the 
direct signal in (1): 

𝑚𝑚(𝑡𝑡) = 2𝐶𝐶MP 𝐶𝐶(𝑡𝑡 − 𝜏𝜏MP)𝑐𝑐(𝑡𝑡 − 𝜏𝜏MP) cos(2𝜋𝜋(𝑓𝑓𝑐𝑐 + 𝛿𝛿𝑓𝑓MP)𝑡𝑡 + 𝜃𝜃MP)  (4) 

where 𝐶𝐶MP, 𝜏𝜏MP, 𝛿𝛿𝑓𝑓MP and 𝜃𝜃MP have the same definition as in Section 5.1, but for the multipath. 

Due to the larger propagation distance of the multipath in particular, it is to be noted that 𝐶𝐶MP ≤ 𝐶𝐶 
and 𝜏𝜏MP > 𝜏𝜏. What is more, depending on the time-varying relative geometry of the satellite–
receiver–reflector system, there is no reason for 𝛿𝛿𝑓𝑓MP being equal to 𝛿𝛿𝑓𝑓 nor 𝜃𝜃MP having the same 
value as 𝜃𝜃. 

In general, a receiver is impacted by multiple multipaths, especially in urban environments where 
reflectors are numerous. Sometimes, the direct path may even be absent due to an obstruction, for 
example when high buildings are surrounding the receiver [18]. However, in this study the 
assumption is made that the direct path is always present and a single multipath will be considered. 

 
Figure 3: An illustration of the noise-free I and Q correlator output model, 𝛥𝛥𝜃𝜃 set to 0, PRN number to 1. 
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5.3 Convolutional neural network model 
Image classification using CNN 

Convolutional neural networks [20] are nowadays considered as among the most powerful tools to 
learn information from images. This is explained by their computational efficiency and their 
impressive performance on image information processing. Their learning capability comes from their 
ability to automatically construct and combine abstract features from an image. The first layers of 
the network are composed of convolutional layers. Such layers apply several filters over the various 
regions of the input image and create feature maps that are various versions of the filtered input 
image. Several convolutional layers are usually stacked in order to progressively extract meaningful 
information from the feature maps as the depth of the network is increased. The last layers of the 
CNN perform the task of classification usually through several layers of neurons with dense 
connectivity. The weights of each convolution layer filters (also called kernels) and those of the 
dense layers are learned through supervised learning based on gradient back-propagation. The 
underlying structure of convolutional layers has the advantage of having sparse connectivity and 
high weight sharing among neurons, which leads to much greater computational efficiency over fully 
connected neural networks when image sizes are large or the image resolutions are high. 

The above principles are at the heart of CNN architectures. Several additional components are 
usually integrated in the network. Some Pooling layers are used in order to reduce the dimension of 
feature maps. A Flatten layer is added in front of the stack of dense layers so as to transform feature 
map information in vector-like input. To increase the generalization power of the network, a 
dropout mechanism can also be used to artificially and randomly remove a small portion of the 
neuron connection within the network. The number and the organization of these various 
components generate several possible CNN architectures [21]. 

Choice of a CNN architecture 

Among CNN architectures that have proven to be effective in practice [22], the Visual Geometry 
Group (VGG)-like architecture has been shown to be one of the best choice for image feature 
extraction [23]. Despite its number of parameters to be trained compared to other popular and 
more complex architectures such as Inception V3 [24], ResNet [25] and other variants, it has been 
widely adopted in practice by the Machine Learning community. The architecture is composed of 
several blocks of convolutional layers that are each separated by a pooling layer that decreases the 
feature map dimension between blocks. As the depth increases, the dimension of layer input 
decreases but the number of filters increases. When data are organized on a multi-scale basis, 
mixing macro and micro patterns, the number of convolutional blocks should be chosen sufficiently 
large. For the GNSS multipath application, such multi-scale representation is not expected in the 
signal. This is the reason why the chosen architecture only includes one convolutional block 
composed of two convolutional layers. It is therefore a very simple instance of a VGG-like network. 
VGG architectures are usually implemented for RGB images (meaning three input channels: the ‘R’, 
‘G’ and ‘B’ channels). For the specific case of I/Q images, each input image is actually composed of 
two channels (I channel + Q channel) that are sharing the GNSS correlation signal information. Input 
images are therefore tensors of size 𝑁𝑁 × 𝑁𝑁 and depth 2. Figure 4 provides the precise network 
architecture and layer dimension used in this PhD thesis. 
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6. Description of the data the study relies on 
In order to test our prediction models, an artificial signal generator was developed. The data are 
generated in the form of two matrices, one for each of the I and Q channels, according to Equations 
(2) and (3). The axes of these matrices are in Doppler shift estimation error 𝛥𝛥𝑓𝑓 and code delay 
estimation error 𝛥𝛥𝜏𝜏. The output data corresponding to this main signal can be parameterized as a 
function of the coherent integration time 𝜋𝜋𝑖𝑖 in ms and the carrier-to-noise ratio 𝐶𝐶∕𝑁𝑁0 in dBHz. 

6.1 Noise sample production 
At the correlator output the noise is not only spatially correlated inside each I and Q image, but also 
cross-correlated between them. The exact derivation of the auto-correlation and cross-correlation 
functions of the noise are still to establish. To overcome this impossibility to generate the noise 
contribution at the correlator output from an analytical model, a workaround has been developed. A 
signal 𝑟𝑟(𝑡𝑡) (1) made of a simple noise term 𝑏𝑏(𝑡𝑡) is correlated according to the process described in 
Figure 1, as would be a true received signal. This correlation process is implemented in a software 
GNSS receiver developed by the SIGnal processing and NAVigation (SIGNAV) research team of the 
ENAC laboratory. The noise samples available at the correlator output are then collected and stored 
in a dataset, to be added on demand as 𝑛𝑛𝐼𝐼 and 𝑛𝑛𝑄𝑄 in Equations (2) and (3). Figure 5 gives an example 
of empirical auto-correlation and cross-correlation functions of noise samples for PRN number 10. 

 
Figure 4: The CNN architecture used in this PhD thesis: the input has 2 channels corresponding to I and Q 
channels, the first and second convolutional layers have 16 and 32 filters respectively with ReLu activations and 
the pooling layer is a 2 × 2 max pooling operation layer (this figure has been generated by the NN-SVG tool 
(LeNail, 2019)). 
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An illustration of the noisy output of the synthetic data generator for 𝜋𝜋𝑖𝑖 = 20 ms and 𝐶𝐶∕𝑁𝑁0 = 45 dBHz 
is given in Figure 6, with the corresponding flattened images in Figure 7 (note the value of the 
navigation bit 𝐶𝐶 = −1 this time, in comparison to Figure 3 where 𝐶𝐶 = +1). 

 
Figure 5: Empirical auto-correlation and cross-correlation functions of the noise at the correlator output for the 
I and Q channels, PRN number set to 10. 
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6.2 Assessment of the synthetic data 
In order to validate the synthetic data generator its outputs have been compared to the data from 
an IFEN SX3 GNSS receiver. Two different data collection sessions have been conducted. 

 
Figure 6: An illustration of the I and Q correlator outputs of the synthetic data generator, PRN number set to 1. 

 
Figure 7: The I and Q correlator outputs of the synthetic data generator as images, PRN number set to 1 



   

Engage PhD final reporting 12 

1 The receiver has been fed with a signal produced by a Spirent GSS6560 generator. The 
scenario implemented in the generator simulates the take-off and initial climb of a 
commercial aircraft from runway 14L of the Toulouse–Blagnac Airport. The flight happens on 
Tuesday the 28th of May 2019 from 12:55 UTC. The multipaths are disabled in this scenario. 

2 A high end GNSS antenna has been connected to the receiver. The antenna was set up in a 
clear view site to avoid multipath contamination. Moreover, only signals from high elevation 
satellites were considered afterwards so that the collected samples could be considered as 
multipath free. The recording was carried out on Friday the 14th of February 2000 from 08:05 
UTC. 

In both cases the SX3 receiver sampling frequency was set to 20 MHz. The samples were stored for 
post-processing by the software GNSS receiver already mentioned in Section 6.1. The resulting 
reference images are available on [19] for the two sessions. Figures 8 and 9 provide an example of 
visual comparison of images. It is worth noting that these real data were used only to validate the 
generator. Indeed, for training purposes it would be unrealistic to produce a sufficient amount of 
labelled physical signals. 

 

 
Figure 8: Comparison between an output of the synthetic data generator and a real sample from a SX3 
receiver, I channel, PRN number set to 1 
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6.3 Model for GNSS multipath data generation 
The considered model integrates I and Q signals, I and Q multipath and correlated receiver noise. If a 
multipath signal is received in addition to the main signal, as the signal processing chain is linear, the 
correlator output can then be considered as the sum of the correlator output of the main signal and 
the one due to the multipath. In this work, a single multipath contamination is considered. Its 
contribution (𝐼𝐼MP, 𝑄𝑄MP) to the correlator output is considered as an additional term to the main signal 
(𝐼𝐼, 𝑄𝑄), detailed in (2) and (3): 

𝐼𝐼 ′ = 𝐼𝐼 + 𝐼𝐼MP(𝛼𝛼MP, 𝛥𝛥𝜏𝜏MP, 𝛥𝛥𝑓𝑓MP, 𝛥𝛥𝜃𝜃MP)  (5) 

𝑄𝑄 ′ = 𝑄𝑄 + 𝑄𝑄MP(𝛼𝛼MP, 𝛥𝛥𝜏𝜏MP, 𝛥𝛥𝑓𝑓MP, 𝛥𝛥𝜃𝜃MP)  (6) 

where 

• 𝛼𝛼MP = 𝐶𝐶MP∕𝐶𝐶 < 1 is the multipath attenuation coefficient in comparison to the main path, 

• 𝛥𝛥𝜏𝜏MP = 𝜏𝜏MP − 𝜏𝜏 > 0 is the code delay in excess to the main signal delay, 

• 𝛥𝛥𝑓𝑓MP = 𝛿𝛿𝑓𝑓MP − 𝛿𝛿𝑓𝑓 is the difference between the Doppler shift of the main signal and the 
multipath, 

• 𝛥𝛥𝜃𝜃MP = 𝜃𝜃MP − 𝜃𝜃 is the difference between the phase of the main signal and the multipath. 

6.4 The I/Q image dataset generation 
The data generator has been implemented with the Python language [19] to produce datasets of I 
and Q images according to the signal and noise models detailed in Sections 6.1 and 6.3. This 

 
Figure 9: Comparison between an output of the synthetic data generator and a real sample from a SX3 
receiver, Q channel, PRN number set to 1 



   

Engage PhD final reporting 14 

software is referred as the generator in this paper. The generator is fully configurable with respect to 
the following parameters: 𝛼𝛼MP, 𝛥𝛥𝜏𝜏MP, 𝛥𝛥𝑓𝑓MP and 𝛥𝛥𝜃𝜃MP which entirely define the multipath. Their 
probability distributions are clarified in Section 7 dedicated to the experiments conducted with the 
help of the generator, 

• 𝐶𝐶∕𝑁𝑁0 ratio which sets the strength of the direct path signal with respect to the receiver 
noise, 

• 𝑁𝑁 the number of pixels along each of the delay and Doppler shift axes. The size of the 
images is then 𝑁𝑁 × 𝑁𝑁 pixels. It is important to mention that 2𝑁𝑁2 is then the number of 
correlators required to implement the technique proposed in this PhD thesis. Hence, it is a 
direct measure of its complexity as the correlation operation is from far the most power and 
time consuming process in a GNSS receiver, 

• 𝜋𝜋𝑖𝑖 the coherent integration time. In this study 𝜋𝜋𝑖𝑖 = 20 ms, a value corresponding to the 
duration of one navigation bit 𝐶𝐶 as defined in Equation (1). It ensures the longest correlation 
time, so the best accuracy for 𝜏𝜏, 𝛿𝛿𝑓𝑓 an 𝜃𝜃 estimation, without bit transition during the 
correlation which would otherwise lower the final result. 

The experiments led in this work were all done with datasets of 600 pairs of I and Q images, equally 
split in 300 with multipath and 300 without. However, the generator can provide datasets of 
arbitrary size and distribution on demand. 

7. Computational experiments 
This section describes the experiments which were conducted to evaluate the performance of the 
proposed model on the dataset described in Section 6.4. For each test case the mean, median and 
standard deviation values of accuracy and F1 score averaged over 20 runs are provided. The range 
and probability distribution of the multipath parameters as defined in Equations (5) and (6) are set, 
unless otherwise specified, as follows: 

• 𝛼𝛼MP the multipath attenuation coefficient is uniformly distributed in [0.1, 0.9], 

• 𝛥𝛥𝜏𝜏MP the additional propagation delay of the multipath is also uniformly distributed, in [0, 
3𝜋𝜋𝑐𝑐∕2], 

• 𝛥𝛥𝑓𝑓MP the difference in Doppler shift between the direct signal and the multipath is 
distributed in [−125, +125] Hz according to a truncated zero-mean normal distribution with a 
standard deviation set to 125∕3, 

• 𝛥𝛥𝜃𝜃MP the difference between the phase of the main signal and the multipath is uniformly 
distributed in [0, 2𝜋𝜋], 

• The value of the navigation bit 𝐶𝐶, as defined in Equation (1), is chosen randomly with equal 
probability between −1 and +1 for each pair of I and Q images. 

7.1. Influence of multipath characteristics 

In these experiments the influence of the multipath characteristics on the detection performance is 
assessed. The experimental conditions are set in this way: 𝐶𝐶∕𝑁𝑁0 = 47 dBHz and the image resolution 
is 80 × 80. This corresponds to good observation conditions for the direct path, so that the CNN 
response can be clearly observed. The tests were conducted on 5 equally spaced values for both the 
difference in Doppler shift 𝛥𝛥𝑓𝑓MP from 0 to 50 Hz and the additional propagation delay of the 
multipath 𝛥𝛥𝜏𝜏MP from 0 to 𝜋𝜋𝑐𝑐. 
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7.2. Influence of the signal to noise ratio C/N0 
In these experiments the influence of 𝐶𝐶∕𝑁𝑁0 ratio on the detection performance is assessed. The 
experimental conditions are the following: 𝜋𝜋𝑖𝑖 = 20 ms and the image resolution is 80 × 80. The 
multipath parameters distributions are identical to those defined in Section 5.2. The tests were 
conducted on equally spaced values of 𝐶𝐶∕𝑁𝑁0 ratio from 24 to 46 dBHz. 

7.3. Influence of the I/Q image resolution 
In order to evaluate the performance of the multipath detector, the proposed algorithm was applied 
on images of various resolutions 𝑁𝑁 ∈ {20, 40, 60, 80} with the intent to estimate the best 
compromise performance vs image resolution. The multipath parameters distributions are the same 
as before. 

8. Results 
8.1. Influence of multipath characteristics 
The results are represented in Tables 1 and 2. They show that there is no significant influence of the 
Doppler shift on the detector performance. On the other hand, when the propagation delay 
approaches 0.2𝜋𝜋𝑐𝑐 (meaning that the multipath gets close to the main signal), a slight degradation of 
the accuracy and F1-score by 6% can be observed. 

 

8.2. Influence of the signal to noise ratio C/N0 
The results are presented on Table 3. From these results the current model shows high robustness 
towards the noisy incoming images for values down to 36−38 dBHz. Then, as expected, the model 

Table 1: Mean (µ) and standard deviation (σ) of prediction accuracy and F1-score with respect to Doppler shift. 

 

Table 2: Mean (µ) and standard deviation (σ) of prediction accuracy and F1-score with respect to propagation 
delay. 
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performance decreases greatly with the value of the 𝐶𝐶∕𝑁𝑁0 (when I and Q images are noisier). On 
Figure 10, it can be also observed that the standard deviation of the metrics decreases when the 
image becomes less noisy. This means that the detection model achieves greater robustness in 
performance when the noise decreases. A value of around 𝐶𝐶∕𝑁𝑁0 = 36 dBHz seems to be also a 
threshold after which the performance is much higher. 

 

Table 3: Mean (µ) and standard deviation (σ) of prediction accuracy and F1-score with respect to carrier to 
noise ratio. 
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8.3. Influence of the I/Q image resolution 
The results in Table 4 show that the model performance decreases with the image resolution. 
However, for resolutions above 40 pixels per axes, the model classification performance stays above 
95%. 

 

9. Analysis of the results 
The experiments exposed in section 8 put in light that the performance of the proposed method is 
more than adequate in the three axes of importance in our study: 

 
Figure 10: Average validation accuracy (left) and average F1 score (right) with respect to carrier to noise ratio 
C/N0 (vertical bars represent standard deviation values). 

Table 4: Mean (µ) and standard deviation (σ) of prediction accuracy and F1-score with respect to image 
resolution. 
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• The multipath parameters have been varied over their respective realistic range to assess 
the validation accuracy. It is not less than 94% in any case, 

• The 𝐶𝐶∕𝑁𝑁0 ratio, that reports the receiving condition of the GNSS signal of interest, was 
changed from 46 (good) to 24 (poor) dBHz, 

• A failover is observed in the performance around 36 (fairly poor) dBHz, which establishes a 
quite acceptable operational limit to our network, 

• The image resolution, parameterized by 𝑁𝑁 the number of points per axes, has been gradually 
decreased to measure the robustness of the algorithm to hardware limitations. Indeed, a 
validation accuracy of 93% is still achieved for 𝑁𝑁 = 20. 

With respect to the chosen architecture, the experiments confirm that the detection task at hand 
does not require large depth as not much multi-scale learning seems to be needed. Indeed, our 
choice of a quite shallow architecture has proven to be appropriate for efficient multipath detection. 

10. Conclusions and look ahead 
In this PhD thesis, a complete GNSS multipath detection framework based on deep learning 
has been presented. The proposed method starts with the construction of training image 
data from synthetic receiver correlation outputs. A precise image generation process based 
on specific parameter definition intervals is described. This process optimizes the relevance 
of built-in information within dataset samples. A CNN architecture is then presented and 
tested with the constructed dataset. For various multipath parameter choices, experiments 
have demonstrated the detection performance of the proposed deep learning model. 
Further investigation using heatmaps provides additional understanding of the detection 
model decision rule and validates its relevance. The results provided in this PhD thesis are 
very encouraging and should motivate further research combining Machine Learning 
techniques and GNSS signal processing modelling. More specifically future research will 
continue the work initiated during the PhD aiming at generating the noise contribution at 
the correlator output by means of GANs instead of using pre-processed noise files. A focus 
should also be placed on multiple multipath that characterizes urban environment. 
Investigations will be conducted with deep regression architectures for multipath 
parameters estimation too. The time dynamic of the multipath should be studied as well in 
order to improve current static learning models. It should be noted that this PhD work is 
two-thirds complete but on hiatus following the departure of the candidate. 
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Annex I: Acronyms 

Term Definition 

AI Artificial Intelligence 

ATM Air Traffic Management 

AWGN Additive White Gaussian Noise 

C/A Coarse/Acquisition 

C/N0 Carrier-to-Noise ratio 

CNN Convolutional Neural Network 

CNS Communication, Navigation and Surveillance 

DLL Delay-Locked Loop 

ENAC École Nationale de l’Aviation Civile 

GNSS Global Navigation Satellite System 

GPS Global Positioning System 

LEO Low Earth Orbit 

MEDLL Multipath Estimating Delay-Locked Loop 

NLOS Non-Line Of Sight 

PRN Pseudo-Random Noise 

PSD Power Spectral Density 

SIGNAV SIGnal processing and NAVigation research team 

VGG Visual Geometry Group 
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